Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Stroke Res ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37222915

RESUMEN

Chronic cerebral hypoperfusion is an important pathological factor in many neurodegenerative diseases, such as cerebral small vessel disease (CSVD). One of the most used animal models for chronic cerebral hypoperfusion is the bilateral common carotid artery stenosis (BCAS) mouse. For the therapy of CSVD and other diseases, it will be beneficial to understand the pathological alterations of the BCAS mouse, particularly vascular pathological changes. A mouse model of BCAS was used, and 8 weeks later, cognitive function of the mice was examined by using novel object recognition test and eight-arm radial maze test. 11.7 T magnetic resonance imaging (MRI) and luxol fast blue staining were used to evaluate the injury of the corpus callosum (CC), anterior commissure (AC), internal capsule (IC), and optic tract (Opt) in the cerebral white matter of mice. Three-dimensional vascular images of the whole brain of mice were acquired using fluorescence micro-optical sectioning tomography (fMOST) with a high resolution of 0.32 × 0.32 × 1.00 µm3. Then, the damaged white matter regions were further extracted to analyze the vessel length density, volume fraction, tortuosity, and the number of vessels of different internal diameters. The mouse cerebral caudal rhinal vein was also extracted and analyzed for its branch number and divergent angle in this study. BCAS modeling for 8 weeks resulted in impaired spatial working memory, reduced brain white matter integrity, and myelin degradation in mice, and CC showed the most severe white matter damage. 3D revascularization of the whole mouse brain showed that the number of large vessels was reduced and the number of small vessels was increased in BCAS mice. Further analysis revealed that the vessel length density and volume fraction in the damaged white matter region of BCAS mice were significantly reduced, and the vascular lesions were most noticeable in the CC. At the same time, the number of small vessels in the above white matter regions was significantly reduced, while the number of microvessels was significantly increased in BCAS mice, and the vascular tortuosity was also significantly increased. In addition, the analysis of caudal rhinal vein extraction revealed that the number of branches and the average divergent angle in BCAS mice were significantly reduced. The BCAS modeling for 8 weeks will lead to vascular lesions in whole brain of mice, and the caudal nasal vein was also damaged, while BCAS mice mainly mitigated the damages by increasing microvessels. What is more, the vascular lesions in white matter of mouse brain can cause white matter damage and spatial working memory deficit. These results provide evidence for the vascular pathological alterations caused by chronic hypoperfusion.

2.
Front Pharmacol ; 12: 732874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744717

RESUMEN

Background: Cerebral small vessel disease (CSVD) is a group of clinical syndromes covering all pathological processes of small vessels in the brain, which can cause stroke and serious dementia. However, as the pathogenesis of CSVD is not clear, so the treatment is limited. Endothelial cell dysfunction is earlier than clinical symptoms, such as hypertension and leukosis. Therefore, the treatment of endothelial cells is expected to be a new breakthrough. Quercetin, a flavonoid present in a variety of plants, has the function of anti-inflammation and anti-oxidation. This study aimed to investigate the protective effect of quercetin on endothelial cell injury and provide a basic theory for subsequent application in the clinic. Methods: Human brain microvascular endothelial cells (HBMECs) were cultured in vitro, and the injury model of endothelial cells was established by hypoxia and reoxygenation (H/R). The protective effects of quercetin on HBMECs were studied from the perspectives of cell viability, cell migration, angiogenesis and apoptosis. In order to further study the mechanism of quercetin, oxidative stress and endoplasmic reticulum stress were analyzed. What's more, blood-brain barrier (BBB) integrity was also studied. Results: Quercetin can promote the viability, migration and angiogenesis of HBMECs, and inhibit the apoptosis. In addition, quercetin can also activate Keap1/Nrf2 signaling pathway, reduce ATF6/GRP78 protein expression. Further study showed that quercetin could increase the expression of Claudin-5 and Zonula occludens-1. Conclusions: Our experiments show that quercetin can protect HBMECs from H/R, which contains promoting cell proliferation, cell migration and angiogenesis, reducing mitochondrial membrane potential damage and inhibiting cell apoptosis. This may be related to its antioxidation and inhibition of endoplasmic reticulum stress. At the same time, quercetin can increase the level of BBB connexin, suggesting that quercetin can maintain BBB integrity.

3.
Drug Des Devel Ther ; 15: 3543-3560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34429584

RESUMEN

PURPOSE: We aimed to investigate potential synergistic antiplatelet effects of Ginkgo biloba extract (GBE50) in combination with aspirin using in vitro models. METHODS: Arachidonic acid (AA), platelet activating factor (PAF), adenosine 5'-diphosphate (ADP) and collagen were used as inducers. The antiplatelet effects of GBE50, aspirin and 1:1 combination of GBE50 and aspirin were detected by microplate method using rabbit platelets. Synergy finder 2.0 was used to analyze the synergistic antiplatelet effect. The compounds in GBE50 were identified by UPLC-Q/TOF-MS analysis and the candidate compounds were screened by TCMSP database. The targets of candidate compounds and aspirin were obtained in TCMSP, CCGs, Swiss target prediction database and drugbank. Targets involving platelet aggregation were obtained from GenCLiP database. Compound-target network was constructed and GO and KEGG enrichment analyses were performed to identify the critical biological processes and signaling pathways. The levels of thromboxane B2 (TXB2), cyclic adenosine monophosphate (cAMP) and PAF receptor (PAFR) were detected by ELISA to determine the effects of GBE50, aspirin and their combination on these pathways. RESULTS: GBE50 combined with aspirin inhibited platelet aggregation more effectively. The combination displayed synergistic antiplatelet effects in AA-induced platelet aggregation, and additive antiplatelet effects occurred in PAF, ADP and collagen induced platelet aggregation. Seven compounds were identified as candidate compounds in GBE50. Enrichment analyses revealed that GBE50 could interfere with platelet aggregation via cAMP pathway, AA metabolism and calcium signaling pathway, and aspirin could regulate platelet aggregation through AA metabolism and platelet activation. ELISA experiments showed that GBE50 combined with aspirin could increase cAMP levels in resting platelets, and decreased the levels of TXB2 and PAFR. CONCLUSION: Our study indicated that GBE50 combined with aspirin could enhance the antiplatelet effects. They exerted both synergistic and additive effects in restraining platelet aggregation. The study highlighted the potential application of GBE50 as a supplementary therapy to treat thrombosis-related diseases.


Asunto(s)
Aspirina/farmacología , Extractos Vegetales/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Animales , Ácido Araquidónico/metabolismo , Aspirina/administración & dosificación , Cromatografía Líquida de Alta Presión , AMP Cíclico/metabolismo , Sinergismo Farmacológico , Ginkgo biloba , Masculino , Espectrometría de Masas , Extractos Vegetales/administración & dosificación , Inhibidores de Agregación Plaquetaria/administración & dosificación , Glicoproteínas de Membrana Plaquetaria/metabolismo , Conejos , Receptores Acoplados a Proteínas G/metabolismo , Tromboxano B2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA