Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
IUCrdata ; 9(Pt 4): x240360, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38721001

RESUMEN

The mol-ecule of the title NCNHCS pincer N-heterocyclic carbene palladium(II) complex, [PdBr(C21H25N3S)]Br, exhibits a slightly distorted square-planar coordination at the palladium(II) atom, with the five-membered chelate ring nearly planar. The six-membered chelate ring adopts an envelope conformation. Upon chelation, the sulfur atom becomes a stereogenic centre with an RS configuration induced by the chiral carbon of the precursor imidazolium salt. There are intra-molecular C-H⋯Br-Pd hydrogen bonds in the structure. The two inter-stitial Br atoms, as the counter-anion of the structure, are both located on crystallographic twofold axes and are connected to the complex cations via C-H⋯·Br hydrogen bonds.

2.
JCI Insight ; 9(10)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652538

RESUMEN

Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess. The goal of this study was to determine the basis of erythropoietin excess in SLC30A10 deficiency. Here, we demonstrate that transcription factors hypoxia-inducible factor 1a (Hif1a) and 2a (Hif2a), key mediators of the cellular response to hypoxia, are both upregulated in livers of Slc30a10-deficient mice. Hepatic Hif2a deficiency corrected erythropoietin expression and polycythemia and attenuated aberrant hepatic gene expression in Slc30a10-deficient mice, while hepatic Hif1a deficiency had no discernible impact. Hepatic Hif2a deficiency also attenuated manganese excess, though the underlying cause of this is not clear at this time. Overall, our results indicate that hepatic HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency and expand our understanding of the contribution of HIFs to human disease.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Subunidad alfa del Factor 1 Inducible por Hipoxia , Hígado , Manganeso , Policitemia , Animales , Policitemia/metabolismo , Policitemia/genética , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hígado/metabolismo , Manganeso/metabolismo , Manganeso/toxicidad , Manganeso/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Humanos , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Eritropoyetina/metabolismo , Eritropoyetina/genética , Ratones Noqueados , Masculino , Hepatocitos/metabolismo
3.
Am J Hematol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38659383

RESUMEN

A recently approved drug that induces erythroid cell maturation (luspatercept) has been shown to improve anemia and reduce the need for blood transfusion in non-transfusion-dependent as well as transfusion-dependent ß-thalassemia (BT) patients. Although these results were predominantly positive, not all the patients showed the expected increase in hemoglobin (Hb) levels or transfusion burden reduction. Additional studies indicated that administration of luspatercept in transfusion-dependent BT was associated with increased erythropoietic markers, decreased hepcidin levels, and increased liver iron content. Altogether, these studies suggest that luspatercept may necessitate additional drugs for improved erythroid and iron management. As luspatercept does not appear to directly affect iron metabolism, we hypothesized that TMPRSS6-ASO could improve iron parameters and iron overload when co-administered with luspatercept. We used an agent analogous to murine luspatercept (RAP-GRL) and another novel therapeutic, IONIS TMPRSS6-LRx (TMPRSS6-ASO), a hepcidin inducer, to treat non-transfusion-dependent BT-intermedia mice. Our study shows that RAP-GRL alone improved red blood cell (RBC) production, with no or limited effect on splenomegaly and iron parameters. In contrast, TMPRSS6-ASO improved RBC measurements, ameliorated splenomegaly, and improved iron overload most effectively. Our results provide pre-clinical support for combining TMPRSS6-ASO and luspatercept in treating BT, as these drugs together show potential for simultaneously improving both erythroid and iron parameters in BT patients.

4.
Inflammation ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630168

RESUMEN

Periodontal disease is the pathological outcome of the overwhelming inflammation in periodontal tissue. Cellular senescence has been associated with chronic inflammation in several diseases. However, the role of cellular senescence in the pathogenesis of periodontal disease remained unclear. This study aimed to investigate the role and the mechanism of cellular senescence in periodontal disease. Using single-cell RNA sequencing, we first found the upregulated level of cellular senescence in fibroblasts and endothelial cells from inflamed gingival tissue. Subsequently, human gingival fibroblasts isolated from healthy and inflamed gingival tissues were labeled as H-GFs and I-GFs, respectively. Compared to H-GFs, I-GFs exhibited a distinct cellular senescence phenotype, including an increased proportion of senescence-associated ß-galactosidase (SA-ß-gal) positive cells, enlarged cell morphology, and significant upregulation of p16INK4A expression. We further observed increased cellular reactive oxygen species (ROS) activity, mitochondrial ROS, and DNA damage of I-GFs. These phenotypes could be reversed by ROS scavenger NAC, which suggested the cause of cellular senescence in I-GFs. The migration and proliferation assay showed the decreased activity of I-GFs while the gene expression of senescence-associated secretory phenotype (SASP) factors such as IL-1ß, IL-6, TGF-ß, and IL-8 was all significantly increased. Finally, we found that supernatants of I-GF culture induced more neutrophil extracellular trap (NET) formation and drove macrophage polarization toward the CD86-positive M1 pro-inflammatory phenotype. Altogether, our findings implicate that, in the inflamed gingiva, human gingival fibroblasts acquire a senescent phenotype due to oxidative stress-induced DNA and mitochondrial damage, which in turn activate neutrophils and macrophages through the secretion of SASP factors.

5.
Tissue Cell ; 88: 102358, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38537379

RESUMEN

OBJECTIVE: With the growing interest in the role of fibroblasts in osteogenesis, this study presents a comparative evaluation of the osteogenic potential of fibroblasts derived from three distinct sources: human gingival fibroblasts (HGFs), mouse embryonic fibroblasts (NIH3T3 cells), and mouse subcutaneous fibroblasts (L929 cells). MC3T3-E1 pre-osteoblast cells were employed as a positive control for osteogenic behavior. DESIGN: Our assessment involved multiple approaches, including vimentin staining for cell origin verification, as well as ALP and ARS staining in conjunction with RT-PCR for osteogenic characterization. RESULTS: Our findings revealed the superior osteogenic differentiation capacity of HGFs compared to MC3T3-E1 and NIH3T3 cells. Analysis of ALP staining confirmed that early osteogenic differentiation was most prominent in MC3T3-E1 cells at 7 days, followed by NIH3T3 and HGFs. However, ARS staining at 21 days demonstrated that HGFs produced the highest number of calcified nodules, indicating their robust potential for late-stage mineralization. This late-stage osteogenic potential of HGFs was further validated through RT-PCR analysis. In contrast, L929 cells displayed no significant osteogenic differentiation potential. CONCLUSIONS: In light of these findings, HGFs emerge as the preferred choice for seed cells in bone tissue engineering applications. This study provides valuable insights into the potential utility of HGFs in the fields of bone tissue engineering and regenerative medicine.

6.
Adv Biol Regul ; 91: 101012, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38220563

RESUMEN

Synaptojanin proteins are evolutionarily conserved regulators of vesicle transport and membrane homeostasis. Disruption of synaptojanin function has been implicated in a wide range of neurological disorders. Synaptojanins act as dual-functional lipid phosphatases capable of hydrolyzing a variety of phosphoinositides (PIPs) through autonomous SAC1-like PIP 4-phosphatase and PIP2 5-phosphatase domains. The rarity of an evolutionary configuration of tethering two distinct enzyme activities in a single protein prompted us to investigate their individual and combined roles in budding yeast. Both PIP and PIP2 phosphatase activities are encoded by multiple gene products and are independently essential for cell viability. In contrast, we observed that the synaptojanin proteins utilized both lipid-phosphatase activities to properly coordinate polarized distribution of actin during the cell cycle. Expression of each activity untethered (in trans) failed to properly reconstitute the basal actin regulatory activity; whereas tethering (in cis), even through synthetic linkers, was sufficient to complement these defects. Studies of chimeric proteins harboring PIP and PIP2 phosphatase domains from a variety of gene products indicate synaptojanin proteins have highly specialized activities and that the length of the linker between the lipid-phosphatase domains is critical for actin regulatory activity. Our data are consistent with synaptojanin possessing a strict requirement for both two-domain configuration for some but not all functions and provide mechanistic insights into a coordinated role of tethering distinct lipid-phosphatase activities.


Asunto(s)
Actinas , Proteínas del Tejido Nervioso , Monoéster Fosfórico Hidrolasas , Humanos , Actinas/genética , Actinas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Lípidos
7.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G310-G317, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252872

RESUMEN

The Activin A Receptor type I (ALK2) is a critical component of BMP-SMAD signaling that, in the presence of ligands, phosphorylates cytosolic SMAD1/5/8 and modulates important biological processes, including bone formation and iron metabolism. In hepatocytes, the BMP-SMAD pathway controls the expression of hepcidin, the liver peptide hormone that regulates body iron homeostasis via the BMP receptors ALK2 and ALK3, and the hemochromatosis proteins. The main negative regulator of the pathway in the liver is transmembrane serine protease 6 (TMPRSS6), which downregulates hepcidin by cleaving the BMP coreceptor hemojuvelin. ALK2 function is inhibited also by the immunophilin FKBP12, which maintains the receptor in an inactive conformation. FKBP12 sequestration by tacrolimus or its silencing upregulates hepcidin in primary hepatocytes and in vivo in acute but not chronic settings. Interestingly, gain-of-function mutations in ALK2 that impair FKBP12 binding to the receptor and activate the pathway cause a bone phenotype in patients affected by Fibrodysplasia Ossificans Progressiva but not hepcidin and iron metabolism dysfunction. This observation suggests that additional mechanisms are active in the liver to compensate for the increased BMP-SMAD signaling. Here we demonstrate that Fkbp12 downregulation in hepatocytes by antisense oligonucleotide treatment upregulates the expression of the main hepcidin inhibitor Tmprss6, thus counteracting the ALK2-mediated activation of the pathway. Combined downregulation of both Fkbp12 and Tmprss6 blocks this compensatory mechanism. Our findings reveal a previously unrecognized functional cross talk between FKBP12 and TMPRSS6, the main BMP-SMAD pathway inhibitors, in the control of hepcidin transcription.NEW & NOTEWORTHY This study uncovers a previously unrecognized mechanism of hepcidin and BMP-SMAD pathway regulation in hepatocytes mediated by the immunophilin FKBP12 and the transmembrane serine protease TMPRSS6.


Asunto(s)
Hepcidinas , Proteína 1A de Unión a Tacrolimus , Humanos , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/genética , Serina , Serina Endopeptidasas/genética , Serina Proteasas , Proteína 1A de Unión a Tacrolimus/genética
9.
Aging Dis ; 14(4): 1390-1406, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163441

RESUMEN

Neuronal synchronization at gamma frequency (30-100 Hz: γ) is impaired in early-stage Alzheimer's disease (AD) patients and AD models. Oligomeric Aß1-42 caused a concentration-dependent reduction of γ-oscillation strength and regularity while increasing its frequency. The mTOR1 inhibitor rapamycin prevented the Aß1-42-induced suppression of γ-oscillations, whereas the mTOR activator leucine mimicked the Aß1-42-induced suppression. Activation of the downstream kinase S6K1, but not inhibition of eIF4E, was required for the Aß1-42-induced suppression. The involvement of the mTOR/S6K1 signaling in the Aß1-42-induced suppression was confirmed in Aß-overexpressing APP/PS1 mice, where inhibiting mTOR or S6K1 restored degraded γ-oscillations. To assess the network changes that may underlie the mTOR/S6K1 mediated γ-oscillation impairment in AD, we tested the effect of Aß1-42 on IPSCs and EPSCs recorded in pyramidal neurons. Aß1-42 reduced EPSC amplitude and frequency and IPSC frequency, which could be prevented by inhibiting mTOR or S6K1. These experiments indicate that in early AD, oligomer Aß1-42 impairs γ-oscillations by reducing inhibitory interneuron activity by activating the mTOR/S6K1 signaling pathway, which may contribute to early cognitive decline and provides new therapeutic targets.

10.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108621

RESUMEN

Heat shock proteins (HSPs) are a class of molecular chaperones with expression increased in response to heat or other stresses. HSPs regulate cell homeostasis by modulating the folding and maturation of intracellular proteins. Tooth development is a complex process that involves many cell activities. During tooth preparation or trauma, teeth can be damaged. The damaged teeth start their repair process by remineralizing and regenerating tissue. During tooth development and injury repair, different HSPs have different expression patterns and play a special role in odontoblast differentiation and ameloblast secretion by mediating signaling pathways or participating in protein transport. This review explores the expression patterns and potential mechanisms of HSPs, particularly HSP25, HSP60 and HSP70, in tooth development and injury repair.


Asunto(s)
Proteínas de Choque Térmico , Chaperonas Moleculares , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas HSP70 de Choque Térmico , Odontogénesis , Proteínas HSP90 de Choque Térmico
11.
Biochem Biophys Res Commun ; 663: 47-53, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37119765

RESUMEN

Enamel hypoplasia is a tooth development defection due to the disruption of enamel matrix mineralization, manifesting as chalky white phenotype. Multiple genes may be involved in this tooth agenesis. It has been proved that ablation of coactivator Mediator1 (Med1) switches the cell fate of dental epithelia, resulting in abnormal tooth development via Notch1 signaling. Smad3 (-/-) mice displays the similar chalky white incisors. However, the expression of Smad3 in Med1 ablation mice and the impact of Med1 on functional integration between Smad3 and Notch1 remains unclear. Cre-loxP-based C57/BL6 mice with epithelial-specific Med1 knockout (Med1 KO) backgrounds were generated. Mandibles and dental epithelial stem cells (DE-SCs) from incisors cervical loop (CL) were isolated from wild-type (CON) mice and Med1 KO mice. Transcriptome sequencing was used to analyze the differences of CL tissue between KO and CON mice. The results revealed the enrichment of TGF-ß signaling pathway. qRT-PCR and western blot were performed to show the gene and protein expression of Smad3, pSmad3, Notch1 and NICD, the key regulators of TGF-ß and Notch1 signaling pathway. Expression of Notch1 and Smad3 was confirmed to be down-regulated in Med1 KO cells. Using activators of Smad3 and Notch1 on Med1 KO cells, both pSmad3 and NICD were rescued. Moreover, adding inhibitors and activators of Smad3 and Notch1 to cells of CON groups respectively, the protein expressions of Smad3, pSmad3, Notch1 and NICD were synergistically affected. In summary, Med1 participates in the functional integration of Smad3 and Notch1, thus promoting enamel mineralization.


Asunto(s)
Transducción de Señal , Calcificación de Dientes , Ratones , Animales , Epitelio/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular , Ratones Noqueados , Proteína smad3/genética , Proteína smad3/metabolismo
12.
bioRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865210

RESUMEN

Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane transport protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to severe manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess, but the basis of erythropoietin excess in SLC30A10 deficiency has yet to be established. Here we demonstrate that erythropoietin expression is increased in liver but decreased in kidneys in Slc30a10-deficient mice. Using pharmacologic and genetic approaches, we show that liver expression of hypoxia-inducible factor 2 (Hif2), a transcription factor that mediates the cellular response to hypoxia, is essential for erythropoietin excess and polycythemia in Slc30a10-deficient mice, while hypoxia-inducible factor 1 (HIF1) plays no discernible role. RNA-seq analysis determined that Slc30a10-deficient livers exhibit aberrant expression of a large number of genes, most of which align with cell cycle and metabolic processes, while hepatic Hif2 deficiency attenuates differential expression of half of these genes in mutant mice. One such gene downregulated in Slc30a10-deficient mice in a Hif2-dependent manner is hepcidin, a hormonal inhibitor of dietary iron absorption. Our analyses indicate that hepcidin downregulation serves to increase iron absorption to meet the demands of erythropoiesis driven by erythropoietin excess. Finally, we also observed that hepatic Hif2 deficiency attenuates tissue manganese excess, although the underlying cause of this observation is not clear at this time. Overall, our results indicate that HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency.

13.
Kidney Int ; 104(1): 61-73, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36990212

RESUMEN

Anemia is a common complication of systemic inflammation. Proinflammatory cytokines both decrease erythroblast sensitivity to erythropoietin (EPO) and increase the levels of the hepatic hormone hepcidin, sequestering iron in stores and causing functional iron deficiency. Anemia of chronic kidney disease (CKD) is a peculiar form of anemia of inflammation, characterized by impaired EPO production paralleling progressive kidney damage. Traditional therapy based on increased EPO (often in combination with iron) may have off-target effects due to EPO interaction with its non-erythroid receptors. Transferrin Receptor 2 (Tfr2) is a mediator of the iron-erythropoiesis crosstalk. Its deletion in the liver hampers hepcidin production, increasing iron absorption, whereas its deletion in the hematopoietic compartment increases erythroid EPO sensitivity and red blood cell production. Here, we show that selective hematopoietic Tfr2 deletion ameliorates anemia in mice with sterile inflammation in the presence of normal kidney function, promoting EPO responsiveness and erythropoiesis without increasing serum EPO levels. In mice with CKD, characterized by absolute rather than functional iron deficiency, Tfr2 hematopoietic deletion had a similar effect on erythropoiesis but anemia improvement was transient because of limited iron availability. Also, increasing iron levels by downregulating only hepatic Tfr2 had a minor effect on anemia. However, simultaneous deletion of hematopoietic and hepatic Tfr2, stimulating erythropoiesis and increased iron supply, was sufficient to ameliorate anemia for the entire protocol. Thus, our results suggest that combined targeting of hematopoietic and hepatic Tfr2 may be a therapeutic option to balance erythropoiesis stimulation and iron increase, without affecting EPO levels.


Asunto(s)
Anemia , Eritropoyetina , Deficiencias de Hierro , Insuficiencia Renal Crónica , Ratones , Animales , Hierro/metabolismo , Eritropoyesis/genética , Hepcidinas/genética , Hepcidinas/metabolismo , Modelos Animales de Enfermedad , Anemia/etiología , Anemia/genética , Eritropoyetina/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Receptores de Transferrina/genética , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/genética
14.
Wei Sheng Yan Jiu ; 52(1): 60-66, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36750331

RESUMEN

OBJECTIVE: To describe dietary intake of calcium, iron, zinc, selenium, vitamin A, vitamin B_1, vitamin B_2 and vitamin C and compare the intake between urban and rural areas among preschool children aged 2-5 years based on the data from the National Nutrition and Health Systematic Survey for Children 0-17 Years of Age in China. METHODS: Children from 14 provinces were selected by multi-stage stratified random cluster sampling, and the dietary data of preschool children aged 2-5 years were recorded using the 3 day 24-hour weighted food records method. SAS 9.4 was used to calculate dietary intake of these micronutrients based on the Chinese Food Composition Table and to compare the intake between urban and rural areas. The risk of insufficient or excessive intake of micronutrients among Chinese children aged 2-5 years was assessed according to the Chinese Dietary Reference Intakes(DRIs) 2013 edition. RESULTS: A total of 820 children aged 2 to 5 years were selected. The median daily dietary calcium intake of children aged 2-5 years in China was 433.7, 338.9, 356.4 and 347.4 mg, respectively. The median daily dietary intake of vitamin B_1 of children aged 2-5 years was 0.5 mg for all age groups. The median daily dietary vitamin B_2 intake of children aged 2-5 years was 0.7, 0.6, 0.6 and 0.6 mg, respectively. The median daily dietary intake of vitamin C of children aged 2-5 years was 37.9, 37.4, 44.0 and 40.0 mg, respectively. The median daily dietary selenium intake of children aged 2-5 years was 17.1, 20.5, 22.7 and 22.3 µg, respectively. Dietary calcium intake for aged 2-5 years, dietary vitamin B_2 intake for aged 2-4 years, dietary iron, selenium, zinc and vitamin B_1 intake for aged 2-3 years was significantly greater in urban children than rural children. Among all nutrients, the proportion of dietary calcium intakes below the estimated average requirement(EAR) was the highest in aged 2-5 years(61.4%, 76.4%, 91.4% and 91.5%, respectively). The proportions of dietary vitamin B_1, vitamin C and selenium intake lower than EAR of children aged 2-5 years in China were 52.4%-63.2%, 42.8%-50.2% and 46.6%-58.7%, respectively. COUCLUSION: The dietary calcium intake of children aged 2-5 years in China remains insufficient for these children, especially for rural children. Dietary vitamin B_1, vitamin C and selenium intake should be improved.


Asunto(s)
Selenio , Oligoelementos , Preescolar , Humanos , Recién Nacido , Lactante , Niño , Adolescente , Micronutrientes , Ingestión de Energía , Calcio de la Dieta , Dieta , Ingestión de Alimentos , Vitaminas , China , Zinc , Ácido Ascórbico
15.
PLoS One ; 18(2): e0281281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36735698

RESUMEN

Although the COVID-19 pandemic began over three years ago, the virus responsible for the disease, SARS-CoV-2, continues to infect people across the globe. As such, there remains a critical need for development of novel therapeutics against SARS-CoV-2. One technology that has remained relatively unexplored in COVID-19 is the use of antisense oligonucleotides (ASOs)-short single-stranded nucleic acids that bind to target RNA transcripts to modulate their expression. In this study, ASOs targeted against the SARS-CoV-2 genome and host entry factors, ACE2 and TMPRSS2, were designed and tested for their ability to inhibit cellular infection by SARS-CoV-2. Using our previously developed SARS-CoV-2 bioassay platform, we screened 180 total ASOs targeting various regions of the SARS-CoV-2 genome and validated several ASOs that potently blocked SARS-CoV-2 infection in vitro. Notably, select ASOs retained activity against both the WA1 and B.1.1.7 (commonly known as alpha) variants. Screening of ACE2 and TMPRSS2 ASOs showed that targeting of ACE2 also potently prevented infection by the WA1 and B.1.1.7 SARS-CoV-2 viruses in the tested cell lines. Combined with the demonstrated success of ASOs in other disease indications, these results support further research into the development of ASOs targeting SARS-CoV-2 and host entry factors as potential COVID-19 therapeutics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Internalización del Virus
16.
Adv Ther ; 40(4): 1317-1333, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36690839

RESUMEN

TMPRSS6 is a serine protease highly expressed in the liver. Its role in iron regulation was first reported in 2008 when mutations in TMPRSS6 were shown to be the cause of iron-refractory iron deficiency anemia (IRIDA) in humans and in mouse models. TMPRSS6 functions as a negative regulator of the expression of the systemic iron-regulatory hormone hepcidin. Over the last decade and a half, growing understanding of TMPRSS6 biology and mechanism of action has enabled development of new therapeutic approaches for patients with diseases of erythropoiesis and iron homeostasis.ClinicalTrials.gov identifier NCT03165864.


Asunto(s)
Anemia Ferropénica , Eritropoyesis , Ratones , Animales , Humanos , Eritropoyesis/genética , Anemia Ferropénica/tratamiento farmacológico , Hierro/metabolismo , Hígado/metabolismo , Homeostasis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
17.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362197

RESUMEN

Mediator complex subunit 1 (MED1) is a coactivator of multiple transcription factors and plays a key role in regulating epidermal homeostasis as well as skin wound healing. It is unknown, however, whether it plays a role in healing oral mucosal wounds. In this study, we investigate MED1's functional effects on oral mucosal wound healing and its underlying mechanism. The epithelial-specific MED1 null (Med1epi-/-) mice were established using the Cre-loxP system with C57/BL6 background. A 3 mm diameter wound was made in the cheek mucosa of the 8-week-old mice. In vivo experiments were conducted using HE staining and immunostaining with Ki67 and uPAR antibodies. The in vitro study used lentiviral transduction, scratch assays, qRT-PCR, and Western blotting to reveal the underlying mechanisms. The results showed that ablation of MED1 accelerated oral mucosal wound healing in 8-week-old mice. As a result of ablation of MED1, Activin A/Follistatin expression was altered, resulting in an activation of the JNK/c-Jun pathway. Similarly, knockdown of MED1 enhanced the proliferation and migration of keratinocytes in vitro, promoting re-epithelialization, which accelerates the healing of oral mucosal wounds. Our study reveals a novel role for MED1 in oral keratinocytes, providing a new molecular therapeutic target for accelerated wound healing.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Cicatrización de Heridas , Ratones , Animales , Cicatrización de Heridas/genética , Queratinocitos/metabolismo , Repitelización , Epidermis/metabolismo , Movimiento Celular , Subunidad 1 del Complejo Mediador/metabolismo
18.
Wei Sheng Yan Jiu ; 51(5): 713-719, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36222031

RESUMEN

OBJECTIVE: To investigate the relationship between the intake of sugary foods and the occurrence and development of myopia in children aged 11-14 in China. METHODS: In the 28 urban and rural survey sites in 14 provinces that implemented the "China Children's Nutrition and Health System Survey and Application for 0-18 Years Old" project, a multi-stage stratified random cluster sampling method was adopted, and finally 12 397 adolescent children aged 11 to 14 were selected in the analysis. Demographic characteristics, myopia information and the intake of sugary food(cakes, preserved fruits, candies, chocolates and ice cream) were collected through questionnaires. Multifactor Logistic regression was used to analyze the relationship between sugary food intake and myopia in children. RESULTS: The median daily intake of sugary foods(cakes, preserved fruits, candies, chocolates and ice cream)of 11-14 year old boys and girls in China was 11.4 g and 11.2 g respectively, 33.9% of boys and 34.2% of girls consumed ≥22 g of sugary food every day. The myopia rates of boys with intakes of <2 g, 2-21 g and ≥22 g were 36.0%, 39.2% and 41.6%, and girls' myopia rates were 45.9%, 51.8% and 55.1%. The result of Logistic regression analysis showed that after controlling for confounding factors such as age, gender, region, weekly high-intensity physical activity time, daily screen time, daily sleep time and daily intake of sugary beverages, compared with boys whose daily intake of sugary food was less than 2 g, the risk of myopia for boys whose daily intake of sugary food reached 2-21 g and ≥22 g was 1.18 and 1.23 times, for girls whose daily intake was less than 2 g, the risk of myopia was 1.27 times and 1.38 times for girls whose intake reached 2-21 g and ≥22 g(P<0.05). No matter whether confounding factors were controlled or not, there was no correlation between the intake of sugary foods and the degree of myopia(P>0.05). CONCLUSION: The consumption of sugary food such as cakes, preserved fruits, candies, chocolates and ice cream among children aged 11 to 14 in China is common, and there is a certain degree of positive correlation with the prevalence of myopia, but no correlation is observed with the degree of myopia.


Asunto(s)
Bebidas , Miopía , Adolescente , Bebidas/análisis , Niño , Preescolar , China/epidemiología , Ingestión de Alimentos , Femenino , Frutas , Humanos , Lactante , Recién Nacido , Masculino , Miopía/epidemiología , Miopía/etiología
19.
Stem Cell Res Ther ; 13(1): 466, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076278

RESUMEN

BACKGROUND: Dental follicle stem cells (DFSCs) show mesenchymal stem cell properties with the potential for alveolar bone regeneration. Stem cell properties can be impaired by reactive oxygen species (ROS), prompting us to examine the importance of scavenging ROS for stem cell-based tissue regeneration. This study aimed to investigate the effect and mechanism of N-acetylcysteine (NAC), a promising antioxidant, on the properties of DFSCs and DFSC-based alveolar bone regeneration. METHODS: DFSCs were cultured in media supplemented with different concentrations of NAC (0-10 mM). Cytologic experiments, RNA-sequencing and antioxidant assays were performed in vitro in human DFSCs (hDFSCs). Rat maxillary first molar extraction models were constructed, histological and radiological examinations were performed at day 7 post-surgery to investigate alveolar bone regeneration in tooth extraction sockets after local transplantation of NAC, rat DFSCs (rDFSCs) or NAC-treated rDFSCs. RESULTS: 5 mM NAC-treated hDFSCs exhibited better proliferation, less senescent rate, higher stem cell-specific marker and immune-related factor expression with the strongest osteogenic differentiation; other concentrations were also beneficial for maintaining stem cell properties. RNA-sequencing identified 803 differentially expressed genes between hDFSCs with and without 5 mM NAC. "Developmental process (GO:0032502)" was prominent, bioinformatic analysis of 394 involved genes revealed functional and pathway enrichment of ossification and PI3K/AKT pathway, respectively. Furthermore, after NAC treatment, the reduction of ROS levels (ROS, superoxide, hydrogen peroxide), the induction of antioxidant levels (glutathione, catalase, superoxide dismutase), the upregulation of PI3K/AKT signaling (PI3K-p110, PI3K-p85, AKT, phosphorylated-PI3K-p85, phosphorylated-AKT) and the rebound of ROS level upon PI3K/AKT inhibition were showed. Local transplantation of NAC, rDFSCs or NAC-treated rDFSCs was safe and promoted oral socket bone formation after tooth extraction, with application of NAC-treated rDFSCs possessing the best effect. CONCLUSIONS: The proper concentration of NAC enhances DFSC properties, especially osteogenesis, via PI3K/AKT/ROS signaling, and offers clinical potential for stem cell-based alveolar bone regeneration.


Asunto(s)
Acetilcisteína , Osteogénesis , Acetilcisteína/metabolismo , Acetilcisteína/farmacología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Diferenciación Celular/fisiología , Células Cultivadas , Saco Dental/metabolismo , Humanos , Osteogénesis/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo
20.
Br J Clin Pharmacol ; 88(12): 5389-5398, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35869634

RESUMEN

AIMS: Transthyretin-mediated amyloidosis is a progressive and fatal disease caused by the build-up of misfolded transthyretin (TTR) protein. Eplontersen is a triantennary N-acetyl galactosamine (GalNAc3)-conjugated antisense oligonucleotide targeting TTR messenger ribonucleic acid (mRNA) to inhibit production of both variant and wild-type TTR. We aimed to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model for eplontersen and to evaluate the impact of covariates on exposure and response. METHODS: Plasma eplontersen and serum TTR concentration data were obtained from two phase 1 studies in healthy volunteers (ClinicalTrials.gov: NCT03728634, NCT04302064). Model development was conducted using a nonlinear mixed-effects approach. RESULTS: Eplontersen PK was well described by a two-compartment model. Evaluation of demographics identified significant covariates of lean body mass on clearance and body weight on intercompartmental clearance and volumes of distribution. Population PK modelling showed the absorption rate was 29.6% greater with injection into the abdomen versus the arm. The typical population terminal elimination half-life was 25.5 days. Serum TTR was well described by an indirect response model with inhibition of TTR production by eplontersen. Maximum fractional inhibition (Imax ) was 0.970 (0.549%RSE) and the half maximal inhibitory concentration (IC50 ) was 0.0283 ng/ml (13.3%RSE). Simulations showed subjects with lower weight had higher exposure (AUC, Cmax ), while higher Cmax was observed when comparing site of administration (ratio abdomen/arm = 1.18), but differences in exposure did not significantly impact response at evaluated doses. CONCLUSION: The exposure-response relationship of eplontersen was well characterised by the PKPD model. Weight and injection site were found to affect systemic exposure, but this effect does not seem to result in clinically relevant variation in response.


Asunto(s)
Neuropatías Amiloides Familiares , Prealbúmina , Humanos , Prealbúmina/genética , Prealbúmina/metabolismo , Oligonucleótidos Antisentido , Neuropatías Amiloides Familiares/tratamiento farmacológico , Neuropatías Amiloides Familiares/genética , Oligonucleótidos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...