Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1367299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716337

RESUMEN

Angelica dahurica is a kind of Chinese traditional herbs with economic and ornament value, widely distributed in China. Despite its significance, there have been limited comprehensive investigations on the genome of A. dahurica, particularly regarding mitochondrial genomes. To investigate the conversion between mitochondrial genome and chloroplast genome, a complete and circular mitochondrial genome was assembled using Oxford Nanopore Technologies (ONT) long reads. The mitochondrial genome of A. dahurica had a length of 228,315 base pairs (bp) with 45.06% GC content. The mitochondrial genome encodes 56 genes, including 34 protein-coding genes, 19 tRNA genes and 3 rRNA genes. Moreover, we discovered that 9 homologous large fragments between chloroplast genome and mitochondrial genome based on sequence similarity. This is the first report for A. dahurica mitochondrial genome, which could provide an insight for communication between plastid genome, and also give a reference genome for medicinal plants within the Angelica family.

2.
Front Plant Sci ; 15: 1368880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533408

RESUMEN

Introduction: Anoectochilus roxburghii is a rare, endangered herb with diverse pharmacological properties. Understanding the main metabolite types and characteristics of wild A. roxburghii is important for efficiently utilizing resources and examining quality according to origin. Methods: Samples were collected from the main production areas across five regions in Fujian Province, China. An untargeted metabolomics analysis was performed on the entire plants to explore their metabolic profiles. We utilized UPLC-MS/MS to specifically quantify eight targeted flavonoids in these samples. Subsequently, correlation analysis was conducted to investigate the relationships between the flavonoids content and both the biological characteristics and geographical features. Results: A comprehensive analysis identified a total of 3,170 differential metabolites, with terpenoids and flavonoids being the most prevalent classes. A region-specific metabolite analysis revealed that the Yongchun (YC) region showed the highest diversity of unique metabolites, including tangeretin and oleanolic acid. Conversely, the Youxi (YX) region was found to have the smallest number of unique metabolites, with only one distinct compound identified. Further investigation through KEGG pathway enrichment analysis highlighted a significant enrichment in pathways related to flavonoid biosynthesis. Further examination of the flavonoid category showed that flavonols were the most differentially abundant. We quantified eight specific flavonoids, finding that, on average, the YX region exhibited higher levels of these compounds. Correlation analysis highlighted a significant association between flavonoids and habitat, especially temperature and humidity. Discussion: Untargeted metabolomics via LC-MS was suitable for identifying region-specific metabolites and their influence via habitat heterogeneity. The results of this study serve as a new theoretical reference for unique markers exclusively present in a specific sample group.

3.
Molecules ; 28(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067620

RESUMEN

Dendrobium nobile Lindl., as an endangered medicinal plant within the genus Dendrobium, is widely distributed in southwestern China and has important ecological and economic value. There are a variety of metabolites with pharmacological activity in D. nobile. The alkaloids and polysaccharides contained within D. nobile are very important active components, which mainly have antiviral, anti-tumor, and immunity improvement effects. However, the changes in the compounds and functional genes of D. nobile induced by methyl jasmonate (MeJA) are not clearly understood. In this study, the metabolome and transcriptome of D. nobile were analyzed after exposure to MeJA. A total of 377 differential metabolites were obtained through data analysis, of which 15 were related to polysaccharide pathways and 35 were related to terpenoids and alkaloids pathways. Additionally, the transcriptome sequencing results identified 3256 differentially expressed genes that were discovered in 11 groups. Compared with the control group, 1346 unigenes were differentially expressed in the samples treated with MeJA for 14 days (TF14). Moreover, the expression levels of differentially expressed genes were also significant at different growth and development stages. According to GO and KEGG annotations, 189 and 99 candidate genes were identified as being involved in terpenoid biosynthesis and polysaccharide biosynthesis, respectively. In addition, the co-expression analysis indicated that 238 and 313 transcription factors (TFs) may contribute to the regulation of terpenoid and polysaccharide biosynthesis, respectively. Through a heat map analysis, fourteen terpenoid synthetase genes, twenty-three cytochrome P450 oxidase genes, eight methyltransferase genes, and six aminotransferase genes were identified that may be related to dendrobine biosynthesis. Among them, one sesquiterpene synthase gene was found to be highly expressed after the treatment with MeJA and was positively correlated with the content of dendrobine. This study provides important and valuable metabolomics and transcriptomic information for the further understanding of D. nobile at the metabolic and molecular levels and provides candidate genes and possible intermediate compounds for the dendrobine biosynthesis pathway, which lays a certain foundation for further research on and application of Dendrobium.


Asunto(s)
Alcaloides , Dendrobium , Transcriptoma , Dendrobium/genética , Dendrobium/metabolismo , Extractos Vegetales/metabolismo , Alcaloides/metabolismo , Terpenos/metabolismo , Metaboloma , Polisacáridos/metabolismo
4.
Front Plant Sci ; 14: 1249456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915510

RESUMEN

Gastrodia elata Blume (Tianma in Chinese), a myco-heterotrophic orchid, is widely distributed in China. Tubers derived from this orchid are traditionally used as both medicinal and edible materials. At present, five primary varieties of G. elata are recorded in the "Flora of China." Among them, the three main varieties currently in artificial cultivation are G. elata f. elata (GR, red stem), G. elata f. glauca (GB, black stem), and G. elata f. viridis (GG, green stem). In our study, the metabolic profiles and chemical composition of these three varieties were determined via UPLC-MS/MS and HPLC-UV. In total, 11,132 metabolites were detected, from which multiple phytometabolites were identified as aromatic compounds, heteroatomic compounds, furans, carbohydrates, organic acids, and their derivatives. A number of differentially expressed metabolites (DEMs) were annotated as bioactive ingredients. Overall, parishins, vanilloloside, and gastrodin A/B in the GB group were markedly higher, whereas gastrodin, gastrol, and syringic acid were more enriched in the GG or GR groups. Moreover, HPLC fingerprint analysis also found six metabolites used as markers for the identification of Gastrodiae Rhizoma in the Chinese Pharmacopoeia, which were also typical DEMs in metabolomics. Of these, gastrodin, 4-hydroxybenzyl alcohol, citric acid, and adenosine were quantitatively detected, showing a similar result with the metabolomic data. In summary, our findings provide novel insights into the phytochemical ingredients of different G. elata varieties, highlighting diverse biological activities and healthcare value.

5.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4655-4662, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802804

RESUMEN

This study aimed to provide a scientific basis for the application of the mycorrhizal planting technology of Dendrobium officinale by investigating the effects of mycorrhizal planting on the fingerprints of D. officinale and the content of six chemical components. Seventeen samples of D. officinale under mycorrhizal and conventional planting were collected from four regions, such as Jinhua of Zhejiang. The HPLC fingerprints were established to evaluate the similarity of the samples. The content of six chemical components of the samples was determined by HPLC. There were 15 common peaks in the fingerprints, and five of them were identified by marker compounds, which were naringenin, 4,4'-dihydroxy-3,5-dimethoxybibenzyl, 3,4'-dihydroxy-5-methoxybibenzyl, 3',4-dihydroxy-3,5'-dimethoxybibenzyl(gigantol), and 3,4-dihydroxy-4',5-dimethoxybibenzyl(DDB-2). The similarities of the fingerprints of mycorrhizal and conventional planting samples and the control fingerprint were in the ranges of 0.733-0.936 and 0.834-0.942, respectively. The influences of mycorrhizal planting on fingerprints were related to planting regions, the germplasm of D. officianle, and the amount of fungal agent. The content of six chemical components in the samples varied greatly, and the content of DDB-2 was the highest, ranging from 69.83 to 488.47 µg·g~(-1). The mycorrhizal planting samples from Chongming of Shanghai and Taizhou of Jiangsu showed an increase in the content of 5-6 components, while samples from Zhangzhou of Fujian and Jinhua of Zhejiang showed an increase in the content of 1-2 components. The results showed that mycorrhizal planting technology did not change the chemical profile of small molecular chemical components of D. officinale, but affected the content of chemical components such as bibenzyls, which has a good application prospect.


Asunto(s)
Dendrobium , Micorrizas , Dendrobium/química , China , Cromatografía Líquida de Alta Presión
6.
Microorganisms ; 11(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37630474

RESUMEN

Armillaria sp. 541, a genus of root-infecting fungi, forms a symbiosis with traditional Chinese medicine Gastrodia elata (Orchid) and Polyporus umbellatus via extensive networks of durable rhizomorphs. It is not clear the hallmarks of comparative transcriptome between the rhizomorphs and hyphae of Armillaria sp. 541. In the present study, transcriptomic analysis of Armillaria sp. 541 identified 475 differentially expressed genes (DEGs) between Armillaria rhizomorphs (AR) and hyphae (AH). Of them, 285 genes were upregulated and 190 were downregulated. Bioinformatics analyses and tests demonstrated DEGs involved in oxidoreductase activity and peptidoglycan binding were significantly enriched in this process when rhizomorph formed from hyphae. We accordingly obtained 14 gene-encoding proteins containing the LysM domain, and further consensus pattern and phylogenetic analysis indicated that their amino acid sequences were conserved and their biological functions may be peptidoglycan binding for recognition between the fungus and host. Among these genes, one, named Armillaria LysM domain recognition gene (aLDRG), was expressed significantly when rhizomorphs were differentiated from hyphae. It was located in the cortical cells of the rhizomorph by in situ hybridization. Furthermore, biolayer interferometry (BLI) assay demonstrated that aLDRG can bind specifically to chitin oligosaccharide of the fungal cell wall, including N,N',N″-Triacetylchitotriose (CO3) and N,N',N″,N'″,N″″-Pentaacetylchitopentaose (CO5). Therefore, we deduced that Armillaria sp. 541 expressed higher levels of LysM protein aLDRG for better binding of oligosaccharide after rhizomorphs were generated. This study provides functional genes for further studies on the interaction between Armillaria sp. 541 and its host.

7.
Front Plant Sci ; 14: 1160446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035052

RESUMEN

Introduction: Galeola lindleyana is a mycoheterotrophic orchid belonging to the tribe Vanilleae within the subfamily Vanilloideae. Methods: In this study, the G. lindleyana plastome was assembled and annotated, and compared with other Vanilleae orchids, revealing the evolutionary variations between the photoautotrophic and mycoheterotrophic plastomes. Results: The G. lindleyana plastome was found to include 32 protein-coding genes, 16 tRNA genes and four ribosomal RNA genes, including 11 pseudogenes. Almost all of the genes encoding photosynthesis have been lost physically or functionally, with the exception of six genes encoding ATP synthase and psaJ in photosystem I. The length of the G. lindleyana plastome has decreased to 100,749 bp, while still retaining its typical quadripartite structure. Compared with the photoautotrophic Vanilloideae plastomes, the inverted repeat (IR) regions and the large single copy (LSC) region of the mycoheterotrophic orchid's plastome have contracted, while the small single copy (SSC) region has expanded significantly. Moreover, the difference in length between the two ndhB genes was found to be 682 bp, with one of them spanning the IRb/SSC boundary. The Vanilloideae plastomes were varied in their structural organization, gene arrangement, and gene content. Even the Cyrtosia septentrionalis plastome which was found to be closest in length to the G. lindleyana plastome, differed in terms of its gene arrangement and gene content. In the LSC region, the psbA, psbK, atpA and psaB retained in the G. lindleyana plastome were missing in the C. septentrionalis plastome, while, the matK, rps16, and atpF were incomplete in the C. septentrionalis plastome, yet still complete in that of the G. lindleyana. Lastly, compared with the G. lindleyana plastome, a 15 kb region located in the SSC area between ndhB-rrn16S was found to be inverted in the C. septentrionalis plastome. These changes in gene content, gene arrangment and gene structure shed light on the polyphyletic evolution of photoautotrophic orchid plastomes to mycoheterotrophic orchid plastomes. Discussion: Thus, this study's decoding of the mycoheterotrophic G. lindleyana plastome provides valuable resource data for future research and conservation of endangered orchids.

8.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5824-5831, 2022 Nov.
Artículo en Chino | MEDLINE | ID: mdl-36472000

RESUMEN

This study aims to analyze the variation of the content of mineral elements in stems and leaves of Dendrobium officinale cultivated with conventional method and mycorrhizal fungi, which is expected to lay a basis for safety of stems and leaves of D. officinale. A total of 7 samples from Jiangsu, Fujian, Shanghai, and Zhejiang were collected, which were then cultivated with conventional method and mycorrhizal fungi, separately. The content of 17 mineral elements in stems and leaves was measured by inductively coupled plasma-mass spectrometry(ICP-MS), and the content changes of the mineral elements were analyzed. The health risks of Pb, Cd, Hg, and As in stems were assessed by target hazard quotient(THQ). The results showed that the content of polluting elements in stems and leaves of D. officinale was low, and the content in the plants cultivated with mycorrhizal fungi was reduced. The content of K, Ca, Mg, and P was high in stems and leaves of the species, suggesting that cultivation with mycorrhizal fungi improved the content of other elements irregularly. According to the THQ, the safety risk of stems of D. officinale cultivated with either conventional method or mycorrhizal fungi was low, particularly the D. officinale cultivated mycorrhizal fungi. The results indicated that cultivation with mycorrhizal fungi influenced the element content in stems and leaves of D. officinale. It is necessary to study the culture substrate, processing technology, and the mechanism of the increase or decrease in mineral elements of D. officinale in the future.


Asunto(s)
Dendrobium , Micorrizas , Dendrobium/química , China , Hojas de la Planta/química , Minerales/análisis , Medición de Riesgo
9.
AMB Express ; 12(1): 129, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202944

RESUMEN

Dendrobium nobile Lindl. has been used as a traditional Chinese medicine for a long time, in which the most important compound is dendrobine functioning in a variety of pharmacological activities. Farnesyl diphosphate synthase (FPPS) is one of the key enzymes in the biosynthetic pathway of dendrobine. In this work, we found the expression profiles of DnFPPS were correlated with the contents of dendrobine under the methyl jasmonate (MeJA) treatments at different time. Then, the cloning and functional identification of a novel FPPS from D. nobile. The full length of DnFPPS is 1231 bp with an open reading frame of 1047 bp encoding 348 amino acids. The sequence similarity analysis demonstrated that DnFPPS was in the high homology with Dendrobium huoshanense and Dendrobium catenatum and contained four conserved domains. Phylogenetic analysis showed that DnFPPS was the close to the DhFPPS. Then, DnFPPS was induced to express in Escherichia coli, purified, and identified by SDS-PAGE electrophoresis. Gas chromatography-mass spectrometry analysis indicated that DnFPPS could catalyze dimethylallyl pyrophosphate and isopentenyl pyrophosphate to produce farnesyl diphosphate. Taken together, a novel DnFPPS was cloned and functionally identified, which supplied a candidate gene for the biosynthetic pathway of dendrobine.

10.
Curr Microbiol ; 79(9): 264, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859013

RESUMEN

In nature, orchid seed germination and seedling development depend on compatible mycorrhizal fungi. Mycorrhizal generalist and specificity affect the orchid distribution and rarity. Here, we investigated the specificity toward fungi in the rare D. huoshanense by mycorrhizal fungal isolation and symbiotic germination in vitro. Twenty mycorrhizal fungal strains were isolated from the roots of adult Dendrobium spp. (six and 12 strains from rare D. huoshanense and widespread D. officinale, respectively, and two strains from D. nobile and D. moniliforme, respectively) and 13 strains belong to Tulasnellaceae and seven strains belong to Serendipitaceae. Germination trials in vitro revealed that all 20 tested fungal strains can stimulate seed germination of D. huoshanense, but only nine strains (~ 50%) can support it up to the seedling stage. This finding indicates that generalistic fungi are important for early germination, but only a few can maintain a symbiosis with host in seedling stage. Thus, a shift of the microbial community from seedling to mature stage probably narrows the D. huoshanense distribution range. In addition, to further understand the relationship between the fungal capability to promote seed germination and fungal enzyme activity, we screened the laccase and pectase activity. The results showed that the two enzymes activities of fungi cannot be directly correlated with their germination-promoting activities. Understanding the host specificity degree toward fungi can help to better interpret the limited geographic distribution of D. huoshanense and provides opportunities for in situ and ex situ conservation and reintroduction programs.


Asunto(s)
Basidiomycota , Dendrobium , Micorrizas , Orchidaceae , Dendrobium/microbiología , Germinación , Orchidaceae/microbiología , Plantones , Semillas/microbiología , Simbiosis
11.
Sci Rep ; 12(1): 7629, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538155

RESUMEN

Sclerotium-forming fungi are ecologically diverse and possess notable pathogenic or medicinal properties. The sclerotial generation mechanism is still elusive though Polyporus umbellatus sclerotia are typical Traditional Chinese Medicine with diuretic and antitumor effects. Protein acetylation displays a crucial role in several biological processes, but the functions of acetylation in this valuable fungus are unknown at present. In this study, acetylome of P. umbellatus was studied using nano LC-Triple TOF mass spectrometry system following immune-affinity-based enrichment. Totally, 648 acetylated sites in 342 proteins were identified and nine motifs were found to be conserved in P. umbellatus including KacY, KacA, KacL, KacG, MacS, MacA, RacA, RacL, and RacG. Acetylated proteins taken part in types of biological processes, particularly to those in biological processes associated with reactive oxygen species (ROS) metabolism. Inhibitors complement tests were carried out to verify the role of ROS in acetylation modification. It was concluded that oxidative stress regulated sclerotial generation via proteins acetylation in P. umbellatus. The present study presents new insight into the essential roles of acetylation in sclerotial formation, which may also be applicable for other sclerotium-forming fungi.


Asunto(s)
Ascomicetos , Polyporus , Acetilación , Ascomicetos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Front Plant Sci ; 13: 880600, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599894

RESUMEN

Orchid seed germination in nature is an extremely complex physiological and ecological process involving seed development and mutualistic interactions with a restricted range of compatible mycorrhizal fungi. The impact of the fungal species' partner on the orchids' transcriptomic and metabolic response is still unknown. In this study, we performed a comparative transcriptomic analysis between symbiotic and asymbiotic germination at three developmental stages based on two distinct fungi (Tulasnella sp. and Serendipita sp.) inoculated to the same host plant, Dendrobium officinale. Differentially expressed genes (DEGs) encoding important structural proteins of the host plant cell wall were identified, such as epidermis-specific secreted glycoprotein, proline-rich receptor-like protein, and leucine-rich repeat (LRR) extensin-like protein. These DEGs were significantly upregulated in the symbiotic germination stages and especially in the protocorm stage (stage 3) and seedling stage (stage 4). Differentially expressed carbohydrate-active enzymes (CAZymes) in symbiotic fungal mycelium were observed, they represented 66 out of the 266 and 99 out of the 270 CAZymes annotated in Tulasnella sp. and Serendipita sp., respectively. These genes were speculated to be involved in the reduction of plant immune response, successful colonization by fungi, or recognition of mycorrhizal fungi during symbiotic germination of orchid seed. Our study provides important data to further explore the molecular mechanism of symbiotic germination and orchid mycorrhiza and contribute to a better understanding of orchid seed biology.

13.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35409120

RESUMEN

Shoot multiplication induced by exogenous cytokinins (CKs) has been commonly used in Phalaenopsis micropropagation for commercial production. Despite this, mechanisms of CKs action on shoot multiplication remain unclear in Phalaenopsis. In this study, we first identified key CKs metabolic genes, including six isopentenyltransferase (PaIPTs), six cytokinin riboside 5' monophosphate phosphoribohydrolase (PaLOGs), and six cytokinin dehydrogenase (PaCKXs), from the Phalaenopsis genome. Then, we investigated expression profiles of these CKs metabolic genes and endogenous CKs dynamics in shoot proliferation by thidiazuron (TDZ) treatments (an artificial plant growth regulator with strong cytokinin-like activity). Our data showed that these CKs metabolic genes have organ-specific expression patterns. The shoot proliferation in vitro was effectively promoted with increased TDZ concentrations. Following TDZ treatments, the highly expressed CKs metabolic genes in micropropagated shoots were PaIPT1, PaLOG2, and PaCKX4. By 30 days of culture, TDZ treatments significantly induced CK-ribosides levels in micropropagated shoots, such as tZR and iPR (2000-fold and 200-fold, respectively) as compared to the controls, whereas cZR showed only a 10-fold increase. Overexpression of PaIPT1 and PaLOG2 by agroinfiltration assays resulted in increased CK-ribosides levels in tobacco leaves, while overexpression of PaCKX4 resulted in decreased CK-ribosides levels. These findings suggest de novo biosynthesis of CKs induced by TDZ, primarily in elevation of tZR and iPR levels. Our results provide a better understanding of CKs metabolism in Phalaenopsis micropropagation.


Asunto(s)
Citocininas , Orchidaceae , Citocininas/metabolismo , Citocininas/farmacología , Orchidaceae/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
14.
Front Plant Sci ; 13: 802801, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185978

RESUMEN

Astragalus membranaceus var. mongolicus (AMM) is an edible and medicinal material and is commonly used in East Asia. According to the pharmacopeia of China, the dried root of AMM is medicinal. However, the aerial parts of AMM are always directly discarded after harvest. The stems and leaves are also rich in active compounds, including saponins, flavonoids, terpenoids, and polysaccharides. To rationally use resources, waste products from AMM stems and leaves are useful substrates for edible fungus cultivation. Here, oyster mushroom (Pleurotus ostreatus var. florida) was cultivated on a basal substrate supplemented with AMM stems and leaves (AMM group). The nutritional and chemical composition of the fruiting body were analyzed by metabolomics and chemometrics. Our results showed that AMM addition to the substrate affected the fresh weight, moisture, fat, protein, and element concentrations, and amino acid composition of oyster mushroom. Moreover, 2,156 metabolites were detected and annotated based on the metabolomics data, of which 680 were identified as differentially expressed metabolites. Many active phytometabolites previously identified in AMM herbs were also detected in the metabolomics of oyster mushroom from AMM group, including 46 terpenoids, 21 flavonoids, 17 alkaloids, 14 phenylpropanoids, and 3 fatty acids. In summary, our results imply that oyster mushroom cultured with AMM stems and leaves might have very high nutritional therapy health care value.

15.
Front Plant Sci ; 13: 1085022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684732

RESUMEN

A large amount of agro-industrial residues are produced from the planting, production and processing of traditional Chinese herbs. As a tonic, edible, and economical herb, Codonopsis pilosula root has been extensively developed into medicine and functional food. However, thousands of tons of aerial parts (stems, leaves, flowers and fruits) have been directly discarded after harvest each year. To utilise agro-wastes, Pleurotus ostreatus was cultivated on a basal substrate supplemented with C. pilosula stems and leaves (CSL). Physicochemical analyses revealed that the basal substrate mixed with CSL was more abundant in cellulose, hemicellulose, and most of micronutrients such as K, Ca, Mg, S, Fe, Zn and Mo. After the first flush, the fruit bodies in CSL group exhibited a higher fresh weight, a wider average pileus diameter and a lower moisture level. Nutrition analyses presented a higher protein content and a lower fat content in mushrooms from CSL group compared with control group. Interestingly, 14 amino acids (glutamine, arginine, valine, leucine, and etc.) and 3 micronutrients (Se, Fe and Zn) were increased after CSL addition to the substrate. Based on untargeted metabolomics, a total of 710 metabolites were annotated. Compared with control group, there were 142 and 117 metabolites significantly increased and decreased in the CSL group. Most of them were grouped into classes of amino acids and peptids, fatty acids, carbohydrates, terpenoids, and etc. Moreover, an abundance of phytometabolites from Codonopsis were detected in P. ostreatus from CSL group, including polyacetylenes or polyenes, flavonoids, alkaloids, terpenoids, organic acids, and etc. UPLC-MS/MS results demonstrated that lobetyolin content in the CSL group samples was 0.0058%. In summary, the aerial parts of C. pilosula processed for use in the production of edible mushroom is an emerging strategy to converting agricultural waste into functional foods.

16.
Ying Yong Sheng Tai Xue Bao ; 32(8): 2931-2938, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34664467

RESUMEN

The agronomic traits, chlorophyll content, physiological indices of Aronia melanocarpa were compared in five treatments, namely negative control (CK), positive control (PCK), low dose of microbial inoculant (T1, 50 g per seedling), moderate dose of microbial inoculant (T2, 100 g per seedling), high dose of microbial inoculant (T3, 200 g per seedling) in field. The diurnal variation of net photosynthetic rate was measured by Li-6400 portable photosynthesis system. The diurnal variation of net photosynthetic rate (Pn) of A. melanocarpa showed a pattern of bi-modal curve with photosynthetic "noon break" phenomenon, which occurred at 1:00 pm. At that time, stomatal conductance (gs) and transpiration rate (Tr) of A. melanocarpa showed a dramatic decline, while intercellular CO2 concentration (Ci) significantly rose. It was a photosynthetic "noon break" phenomenon caused by non-stomatal limitation. Application of inoculant to A. melanocarpa successfully avoided the photosynthetic "noon break" phenomenon. Compared with average value of CK and PCK, Pn, gs, Tr, water use efficiency (WUE) and light utilization efficiency (LUE) of inoculation groups increased by 113%, 91%, 50%, 48% and 117% at 1:00 pm. Daily mean of Pn, gs, Tr and LUE of inoculation group was 1.5, 1.9, 1.4 and 1.5 times as that of average value of CK and PCK. The inductive effect of high dose of microbial inoculant treatment was the best among inoculation treatments, with the seedling height 1.2 times as that of the moderate and low inoculant groups. All growth indices, photosynthetic parameters and resistant physiological indices of high dose group were superior to other groups. Our results suggested that fungi M23 could improve the adaptability of A. melanocarpa to environmental stresses and promote its growth by increasing photosynthesis, with the inductive effect of high dose being the best.


Asunto(s)
Photinia , Clorofila , Fotosíntesis , Plantones , Agua
17.
Front Plant Sci ; 12: 693561, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552603

RESUMEN

Dendrobium officinale Kimura et Migo is a traditional and scarce medicinal orchid in China. Mycorrhizal fungi could supply nitrogen (N) to orchids for seed germination and seedling recruitment. However, the N transport mechanism between orchids and the fungus is poorly understand. Early studies found that the fungus MF23 (Mycena sp.) could promote the growth of D. officinale. To better dissect the molecular interactions involved in N transport between D. officinale and MF23, transcriptome and metabolome analyses were conducted on conventional and mycorrhizal cultivations of D. officinale. Moreover, validation tests were carried out in the greenhouse to measure net fluxes of N O 3 - and N H 4 + of roots by a non-invasive micro-test technology (NMT), determine N assimilation enzyme activity by the ELISA, and analyze the expression level of differentially expressed genes (DEGs) of N transporters and DEGs involved in N metabolism by RT-qPCR. Combined transcriptome and metabolome analyses showed that MF23 may influence N metabolism in D. officinale. The expression of DoNAR2.1 (nitrate transporter-activating protein), DoAMT11 (ammonium transporter), DoATFs (amino acid transporters), DoOPTs (oligopeptide transporters), and DoGDHs (glutamate dehydrogenases) in symbiotic D. officinale was upregulated. NMT results showed a preference for N H 4 + in D. officinale and indicated that MF23 could promote the uptake of N O 3 - and N H 4 + , especially for N H 4 + . ELISA results showed that MF23 could increase the activity of glutamine synthetase (GS) and glutamate dehydrogenase. This study suggested that MF23 increases the production of D. officinale by affecting N uptake and N H 4 + assimilation capacity.

18.
Sci Rep ; 11(1): 17326, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462479

RESUMEN

Polyporus umbellatus is a precious medicinal fungus. Oxalic acid was observed to affect sclerotial formation and sclerotia possessed more medicinal compounds than mycelia. In this study, the transcriptome of P. umbellatus was analysed after the fungus was exposed to various concentrations of oxalic acid. The differentially expressed genes (DEGs) encoding a series of oxidases were upregulated, and reductases were downregulated, in the low-oxalic-acid (Low OA) group compared to the control (No OA) group, while the opposite phenomenon was observed in the high-oxalic-acid (High OA) group. The detection of reactive oxygen species (ROS) in P. umbellatus mycelia was performed visually, and Ca2+ and H2O2 fluxes were measured using non-invasive micro-test technology (NMT). The sclerotial biomass in the Low OA group increased by 66%, however, no sclerotia formed in the High OA group. The ROS fluorescence intensity increased significantly in the Low OA group but decreased considerably in the High OA group. Ca2+ and H2O2 influx significantly increased in the Low OA group, while H2O2 exhibited efflux in the High OA group. A higher level of oxidative stress formed in the Low OA group. Different concentrations of oxalic acid were determined to affect P. umbellatus sclerotial formation in different ways.


Asunto(s)
Señalización del Calcio , Ácido Oxálico/metabolismo , Polyporus/genética , Polyporus/metabolismo , Transcriptoma , Biomasa , Biotecnología , Calcio/metabolismo , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Peróxido de Hidrógeno , Estrés Oxidativo , Especies Reactivas de Oxígeno
19.
Appl Microbiol Biotechnol ; 105(18): 6597-6606, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34463801

RESUMEN

Sesquiterpenes are one of the most diverse groups of secondary metabolites that have mainly been observed in terpenoids. It is a natural terpene containing 15 carbon atoms in the molecule and three isoprene units with chain, ring, and other skeleton structures. Sesquiterpenes have been shown to display multiple biological activities such as anti-inflammatory, anti-feedant, anti-microbial, anti-tumor, anti-malarial, and immunomodulatory properties; therefore, their therapeutic effects are essential. In order to overcome the problem of low-yielding sesquiterpene content in natural plants, regulating their biosynthetic pathways has become the focus of many researchers. In plant and microbial systems, many genetic engineering strategies have been used to elucidate biosynthetic pathways and high-level production of sesquiterpenes. Here, we will introduce the research progress and prospects of the biosynthesis of artemisinin, costunolide, parthenolide, and dendrobine. Furthermore, we explore the biosynthesis of dendrobine by evaluating whether the biosynthetic strategies of these sesquiterpene compounds can be applied to the formation of dendrobine and its intermediate compounds. KEY POINTS: • The development of synthetic biology has promoted the study of terpenoid metabolism and provided an engineering platform for the production of high-value terpenoid products. • Some possible intermediate compounds of dendrobine were screened out and the possible pathway of dendrobine biosynthesis was speculated. • The possible methods of dendrobine biosynthesis were explored and speculated.


Asunto(s)
Alcaloides , Sesquiterpenos , Vías Biosintéticas , Terpenos
20.
Fitoterapia ; 152: 104926, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33991602

RESUMEN

Dengratiol A (1), an unprecedented bibenzyl derivative bearing a tropolone unit together with three pairs of bibenzyl enantiomers (±)-dengratiols B-D [(±)-2-(±)-4], were isolated from Dendrobium gratiossimum Rchb.f. The resolution of enantiomers was performed with chiral HPLC. Their structures were characterized by extensive spectroscopic data analysis and calculated electronic circular dichroism (ECD). A hypothetical biosynthetic pathway for 1 is proposed. Biological assay revealed that (-)-2 showed moderate antiviral effect against IAV with IC50 value of 6.3 µM, and (±)-2 displayed cytotoxic activities against five human tumor cell lines with IC50 values ranging from 15.5 to 42.5 µM.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Bibencilos/farmacología , Dendrobium/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Bibencilos/aislamiento & purificación , Línea Celular Tumoral , China , Humanos , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Tallos de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...