Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 166: 107550, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37826950

RESUMEN

Genomic islands are fragments of foreign DNA that are found in bacterial and archaeal genomes, and are typically associated with symbiosis or pathogenesis. While numerous genomic island detection methods have been proposed, there has been limited evaluation of the efficiency of the genome information processing and boundary recognition tools. In this study, we conducted a review of the statistical methods involved in genomic signatures, host signature extraction, informative signature selection, divergence measures, and boundary detection steps in genomic island prediction. We compared the performances of these methods on simulated experiments using alien fragments obtained from both artificial and real genomes. Our results indicate that among the nine genomic signatures evaluated, genomic signature frequency and full probability performed the best. However, their performance declined when normalized to their expectations and variances, such as Z-score and composition vector. Based on our experiments of the E. coli genome, we found that the confidence intervals of the window variances achieved the best performance in the signature extraction of the host, with the best confidence interval being 1.5-2 times the standard error. Ordered kurtosis was most effective in selecting informative signatures from a single genome, without requiring prior knowledge from other datasets. Among the three divergence measures evaluated, the two-sample t-test was the most successful, and a non-overlapping window with a small eye window (size 2) was best suited for identifying compositionally distinct regions. Finally, the maximum of the Markovian Jensen-Shannon divergence score, in terms of GC-content bias, was found to make boundary detection faster while maintaining a similar error rate.

2.
Front Oncol ; 12: 920990, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875128

RESUMEN

Crizotinib is a tyrosine kinase inhibitor that has been found to be effective in the treatment of c-ros oncogene 1-positive non-small cell lung cancer. Although this targeted agent for treating cancer has shown superiority to standard chemotherapy in some ways, this drug has adverse effects, such as the development of renal abscesses. Some associated renal damage may disappear with crizotinib withdrawal. Hence, we present the case of a 58-year-old man with non-small cell lung cancer on crizotinib therapy who developed bilateral renal abnormal space-occupying lesions, successively which were difficult to identify using various imaging methods; even PET-CT highly suspected the right renal masses as malignant. Finally, the right renal lesions were confirmed as renal abscesses by postoperative pathology. The left renal lesion was considered as renal cysts through the lesion disappearing after crizotinib withdrawal. There have been very few reports in this respect, especially proved by various methods and confirmed by postoperative pathology. It is important to recognize this drug-related complication in order to avoid incorrect diagnosis and inadequate therapy. It is necessary to monitor renal changes after taking crizotinib.

3.
Aging (Albany NY) ; 13(19): 23169-23181, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34618681

RESUMEN

Breast cancer is one of the most common malignant cancers among women. Cancer cells and adjacent cells determine the development of the disease. Tumor associated macrophages (TAMs) are involved in the regulation of different stages of cancer progression. LncRNAs play an important role in tumor growth and metastasis. However, the function of lncRNA in macrophage and tumor cell interaction is poorly described. Here we reported that lncRNA SNHG1 functioned as a modulator of M2 macrophage polarization and regulated tumor growth and angiogenesis. We indicated that knockdown of SNHG1 inhibited M2 macrophage polarization by suppression of STAT6 phosphorylation. SNHG1 silencing significantly alleviated migration of MCF-7 cells and tube formation of Human Umbilical Vein Endothelial Cells (HUVEC). Furthermore, we found that implantation of cell mixture of MCF-7 cells and macrophages promoted tumor growth and angiogenesis. However, knockdown of SNHG1 in macrophages reversed that effect. Collectively, we demonstrated the important role of lncRNA SNHG1 in macrophages and breast cancer cells interaction. We highlight the essential effect of lncRNA in tumor progression and provide a new method for the prevention and treatment of breast tumor metastasis.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante/genética , Macrófagos Asociados a Tumores/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Activación de Macrófagos/genética , Ratones , Ratones Desnudos , Células RAW 264.7 , ARN Largo no Codificante/metabolismo
4.
Biosci Rep ; 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32458975

RESUMEN

This study aimed to investigate the effect of SIK2 on cisplatin resistance induced by aerobic glycolysis in breast cancer cells and its potential mechanism. qRt-PCR and Western blot were used to detect SIK2 mRNA and protein levels, and cisplatin (DDP) resistant cell lines of breast cancer cells were established. Viability was measured and evaluated via CCK-8, cell invasion capability was evaluated via Transwell, and apoptosis rate was assessed via Flow cytometry. The glycolysis level was evaluated by measuring glucose consumption and lactic acid production. The protein levels of p-PI3K, p- protein kinase B (Akt) and p-mTOR were determined by western blot. SIK2 was highly expressed in breast cancer tissues and cells compared with adjacent tissues and normal human breast epithelial cells, and it had higher diagnostic value for breast cancer. Silencing SIK2 expression can inhibit proliferation and invasion of breast cancer cells and induce their apoptosis. In addition, SIK2 knockdown inhibits glycolysis, reverses the resistance of drug-resistant cells to cisplatin, and inhibits PI3K/AKT/mTOR signaling pathway. When LY294002 was used to inhibit PI3K/AKT/mTOR signaling pathway, the effect of pcDNA3.1-SIK2 on aerobic glycolysis of breast cancer cells could be reversed. SIK2 can promote cisplatin resistance caused by aerobic glycolysis of breast cancer cells through PI3K/AKT/mTOR signaling pathway, which may be a new target to improve cisplatin resistance of breast cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...