Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Biomater Res ; 28: 0029, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720795

RESUMEN

The improvement of the myocardial microenvironment largely determines the prognosis of myocardial infarction (MI). After MI, early removal of excessive reactive oxygen species (ROS) in the microenvironment can alleviate oxidative stress injury and promote M2 phenotype polarization of macrophages, which is important for advocating myocardial repair. In this study, we combined traditional natural hydrogel materials chitosan (CS) and gelatin (Gel) to encapsulate polydopamine-modified black phosphorus nanosheets (BP@PDA). We designed an injectable composite gel (CS-Gel-BP@PDA) with a time-released ability to achieve in situ sustained-release BP@PDA in the area of MI. Utilizing the inflammation inhibition ability of CS-Gel itself and the high reactive activity of BP@PDA with ROS, continuous improvement of infarct microenvironment and myocardial repair were achieved. The studies in vivo revealed that, compared with the saline group, CS-Gel-BP@PDA group had alleviated myocardial fibrosis and infarct size and importantly improved cardiac function. Immunofluorescence results showed that the ROS level and inflammatory response in the microenvironment of the CS-Gel-BP@PDA group were decreased. In conclusion, our study demonstrated the time-released ability, antioxidative stress activity and macrophage polarization modulation of the novel composite hydrogel CS-Gel-BP@PDA, which provides inspiration for novel therapeutic modalities for MI.

2.
Cancer Med ; 13(9): e7218, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733169

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) are a promising immunotherapy approach, but glioblastoma clinical trials have not yielded satisfactory results. OBJECTIVE: To screen glioblastoma patients who may benefit from immunotherapy. METHODS: Eighty-one patients receiving anti-PD1/PD-L1 treatment from a large-scale clinical trial and 364 patients without immunotherapy from The Cancer Genome Atlas (TCGA) were included. Patients in the ICI-treated cohort were divided into responders and nonresponders according to overall survival (OS), and the most critical responder-relevant features were screened using random forest (RF). We constructed an artificial neural network (ANN) model and verified its predictive value with immunotherapy response and OS. RESULTS: We defined two groups of ICI-treated glioblastoma patients with large differences in survival benefits as nonresponders (OS ≤6 months, n = 18) and responders (OS ≥17 months, n = 8). No differentially mutated genes were observed between responders and nonresponders. We performed RF analysis to select the most critical responder-relevant features and developed an ANN with 20 input variables, five hidden neurons and one output neuron. Receiver operating characteristic analysis and the DeLong test demonstrated that the ANN had the best performance in predicting responders, with an AUC of 0.97. Survival analysis indicated that ANN-predicted responders had significantly better OS rates than nonresponders. CONCLUSION: The 20-gene panel developed by the ANN could be a promising biomarker for predicting immunotherapy response and prognostic benefits in ICI-treated GBM patients and may guide oncologists to accurately select potential responders for the preferential use of ICIs.


Asunto(s)
Antígeno B7-H1 , Glioblastoma , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Redes Neurales de la Computación , Receptor de Muerte Celular Programada 1 , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/inmunología , Glioblastoma/terapia , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Masculino , Femenino , Inmunoterapia/métodos , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/inmunología , Anciano , Adulto , Pronóstico , Resultado del Tratamiento
3.
Artículo en Inglés | MEDLINE | ID: mdl-38727971

RESUMEN

Petroleum hydrocarbons are a stubborn pollutant that is difficult to degrade globally, and plant-microbial degradation is the main way to solve this type of pollutant. In this study, the physiological and ecological responses of alfalfa to petroleum hydrocarbons in different concentrations of petroleum hydrocarbon-contaminated soil with KB1 (Rhodococcus erythropolis) were analyzed and determined by laboratory potting techniques. The growth of alfalfa (CK) and alfalfa with KB1 (JZ) in different concentrations of petroleum hydrocarbons contaminated soil was compared and analyzed. The results of the CK group showed that petroleum hydrocarbons could significantly affect the activity of alfalfa antioxidant enzyme system, inhibit the development of alfalfa roots and the normal growth of plants, especially in the high-concentration group. KB1 strain had the ability to produce IAA, form biofilm, fix nitrogen, produce betaine and ACC deaminase, and the addition of KB1 could improve the growth traits of alfalfa in the soil contaminated with different concentrations of petroleum hydrocarbons, the content of soluble sugars in roots, and the stress resistance and antioxidant enzyme activities of alfalfa. In addition, the degradation kinetics of the strain showed that the degradation rate of petroleum could reach 75.2% after soaking with KB1. Furthermore, KB1 can efficiently degrade petroleum hydrocarbons in advance and significantly alleviate the damage of high concentration of petroleum hydrocarbons to plant roots. The results showed that KB1 strains and alfalfa plants could effectively enhance the degradation of petroleum hydrocarbons, which provided new ideas for improving bioremediation strategies.

4.
Front Neurosci ; 18: 1308627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595969

RESUMEN

Background: The 2021 World Health Organization Classification of Central Nervous System Tumors updates glioma subtyping and grading system, and incorporates EGFR amplification (Amp) as one of diagnostic markers for glioblastoma (GBM). Purpose: This study aimed to describe the frequency, clinical value and molecular correlation of EGFR Amp in diffuse gliomas based on the latest classification. Methods: We reviewed glioma patients between 2011 and 2022 at our hospital, and included 187 adult glioma patients with available tumor tissue for detection of EGFR Amp and other 59 molecular markers of interest. Clinical, radiological and pathological data was analyzed based on the status of EGFR Amp in different glioma subtypes. Results: 163 gliomas were classified as adult-type diffuse gliomas, and the number of astrocytoma, oligodendroglioma and GBM was 41, 46, and 76. EGFR Amp was more common in IDH-wildtype diffuse gliomas (66.0%) and GBM (85.5%) than IDH-mutant diffuse gliomas (32.2%) and its subtypes (astrocytoma, 29.3%; oligodendroglioma, 34.8%). EGFR Amp did not stratify overall survival (OS) in IDH-mutant diffuse gliomas and astrocytoma, while was significantly associated with poorer OS in IDH-wildtype diffuse gliomas, histologic grade 2 and 3 IDH-wildtype diffuse astrocytic gliomas and GBM. Conclusion: Our study validated EGFR Amp as a diagnostic marker for GBM and still a useful predictor for shortened OS in this group.

5.
Food Microbiol ; 121: 104497, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637068

RESUMEN

Daqu is a saccharification agent required for fermenting Baijiu, a popular Chinese liquor. Our objective was to investigate the relationships between physicochemical indices, microbial community diversity, and metabolite profiles of strong-flavor Jinhui Daqu during different storage periods. During different storage periods of Jinhui Daqu, we combined Illumina MiSeq sequencing and non-target sequencing techniques to analyze dynamic changes of the microbial community and metabolite composition, established a symbiotic network and explored the correlation between dominant microorganisms and differential metabolites in Daqu. Fungal community diversity in 8d_Daqu was higher than that in 45d_Daqu and 90d_Daqu, whereas bacterial community diversity was higher in 90d_Daqu. Twelve bacterial and four fungal genera were dominant during storage of Daqu. Bacillus, Leuconostoc, Kroppenstedtia, Lactococcus, Thermomyces and Wickerhamomyces decreased as the storage period increased. Differences of microbiota structure led to various metabolic pathways, and 993 differential metabolites were found in all Daqu samples. Differential microorganisms were significantly related to key metabolites. Major metabolic pathways involved in the formation of amino acids and lipids, such as l-arogenate and hydroxyproline, were identified. Interactions between moisture, acidity, and microbes may drive the succession of the microbial community, which further affects the formation of metabolites.


Asunto(s)
Bacillus , Microbiota , Fermentación , Bacterias , Metaboloma
6.
Cancer Lett ; 592: 216908, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38677640

RESUMEN

Pituitary neuroendocrine tumors (pitNETs) are the second most common primary brain tumors. Despite their prevalence, the tumor immune microenvironment (TIME) and its clinical implications remain largely unexplored. This review provides a comprehensive overview of current knowledge on the immune landscape and advancements in targeted immunotherapy for pitNETs. Macrophages and T cells are principal immune infiltrates within the TIME. Different subtypes of pitNETs display distinct immune patterns, influencing tumor progressive behaviors. PD-L1, the most extensively studied immune checkpoint, is prominently expressed in hormonal pitNETs and correlates with tumor growth and invasion. Cytokines and chemokines including interleukins, CCLs, and CXCLs have complex correlations with tumor subtypes and immune cell infiltration. Crosstalk between macrophages and pitNET cells highlights bidirectional regulatory roles, suggesting potential macrophage-targeted strategies. Recent preclinical studies have demonstrated the efficacy of anti-PD-L1 therapy in a mouse model of corticotroph pitNET. Moreover, anti-PD-1 and/or anti-CTLA-4 immunotherapy has been applied globally in 28 cases of refractory pitNETs, showing more favorable responses in pituitary carcinomas than aggressive pitNETs. In conclusion, the TIME of pitNETs represents a promising avenue for targeted immunotherapy and warrants further investigation.

8.
CNS Neurosci Ther ; 30(3): e14649, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38448295

RESUMEN

BACKGROUD: Glioblastoma multiforme (GBM) is among the most aggressive cancers, with current treatments limited in efficacy. A significant hurdle in the treatment of GBM is the resistance to the chemotherapeutic agent temozolomide (TMZ). The methylation status of the MGMT promoter has been implicated as a critical biomarker of response to TMZ. METHODS: To explore the mechanisms underlying resistance, we developed two TMZ-resistant GBM cell lines through a gradual increase in TMZ exposure. Transcriptome sequencing of TMZ-resistant cell lines revealed that alterations in histone post-translational modifications might be instrumental in conferring TMZ resistance. Subsequently, multi-omics analysis suggests a strong association between histone H3 lysine 9 acetylation (H3K9ac) levels and TMZ resistance. RESULTS: We observed a significant correlation between the expression of H3K9ac and MGMT, particularly in the unmethylated MGMT promoter samples. More importantly, our findings suggest that H3K9ac may enhance MGMT transcription by facilitating the recruitment of the SP1 transcription factor to the MGMT transcription factor binding site. Additionally, by analyzing single-cell transcriptomics data from matched primary and recurrent GBM tumors treated with TMZ, we modeled the molecular shifts occurring upon tumor recurrence. We also noted a reduction in tumor stem cell characteristics, accompanied by an increase in H3K9ac, SP1, and MGMT levels, underscoring the potential role of H3K9ac in tumor relapse following TMZ therapy. CONCLUSIONS: The increase in H3K9ac appears to enhance the recruitment of the transcription factor SP1 to its binding sites within the MGMT locus, consequently upregulating MGMT expression and driving TMZ resistance in GBM.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Temozolomida/farmacología , Temozolomida/uso terapéutico , Histonas , Multiómica , Procesamiento Proteico-Postraduccional , Factor de Transcripción Sp1
9.
Discov Oncol ; 15(1): 85, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517553

RESUMEN

Predictive markers and prognostic models are useful for the individualization of cancer treatment. In this study, we sought to identify clinical and molecular factors to predict overall survival in recurrent glioma patients receiving bevacizumab-containing regimens. A cohort of 102 patients was retrospectively collected from June 2011 to January 2022 at our institution. A nomogram was generated by Cox regression and feature selection algorithms based on 19 clinicopathological and 60 molecular variables. The model's performance was internally evaluated by bootstrapping in terms of discrimination and calibration. The median overall survival from the initiation of bevacizumab administration to death or last follow-up was 11.6 months (95% CI: 9.2-13.8 months) for all 102 patients, 10.2 months (95% CI: 6.4-13.3 months) for 66 patients with grade 4 tumors, and 13.8 months (lower limit of 95% CI: 11.5 months) for 36 patients with tumors of grade lower or not available. In the final model, a lower WHO 2021 grade (Grade lower or not available vs. Grade 4, HR: 0.398, 95% CI: 0.223-0.708, p = 0.00172), having received adjuvant radiochemotherapy (Yes vs. No, HR: 0.488, 95% CI: 0.268-0.888, p = 0.0189), and wildtype EGFR (Wildtype vs. Altered, HR: 0.193, 95% CI: 0.0506-0.733, p = 0.0157; Not available vs. Altered, HR: 0.386, 95% CI: 0.184-0.810, p = 0.0118) were significantly associated with longer overall survival in multivariate Cox regression. The overall concordance index was 0.652 (95% CI: 0.566-0.714), and the areas under the time-dependent curves for 6-, 12-, and 18-month overall survival were 0.677 (95% CI: 0.516-0.816), 0.654 (95% CI: 0.470-0.823), and 0.675 (95% CI: 0.491-0.860), respectively. A prognostic model for overall survival in recurrent glioma patients treated with bevacizumab-based therapy was established and internally validated. It could serve as a reference tool for clinicians to assess the extent the patients may benefit from bevacizumab and stratify their treatment response.

10.
Heliyon ; 10(3): e24562, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318046

RESUMEN

Sustained myocardial injury due to hypertension and diabetes mellitus leads to production of endogenous reactive oxygen species (ROS) and insufficient myocardial antioxidant capacity, increasing the risk of cardiomyocyte ferroptosis. Ferroptosis is a nonapoptotic form of cell death driven by unrestricted lipid peroxidation. Dysfunction of the glutathione peroxidase 4 (GPX4) antioxidant system also plays an important role in ferroptosis. Cardiomyocyte ferroptosis ultimately leads to myocardial deterioration, such as inflammation, fibrosis, and cardiac remodeling, resulting in structural and functional changes. Pterostilbene (PTS), a demethylated derivative of resveratrol, exhibits strong anti-inflammatory and antioxidative activities. In this study, we used in vitro experiments to explore ferroptosis induced by angiotensin II (Ang II) of primary cardiac myocytes (CMs) and in vivo experiments to prepare a transverse aortic constriction (TAC)-induced cardiac dysfunction mouse model. PTS can significantly ameliorate Ang II-induced cardiomyocyte ferroptosis in vitro and reduce cardiac remodeling, while improving cardiac function in mice after TAC in vivo. Further mechanistic investigations revealed that PTS exerts its protective effect through the SIRT1/GSK-3ß/GPX4 pathway. After siRNA-mediated knockdown of SIRT1 or GPX4 in CMs, the protective effects of PTS on cardiomyocytes were abolished. This study provides important theoretical support for the potential of PTS to attenuate pathological cardiac remodeling and heart failure and provides a preliminary exploration of the molecular pathways involved in its protective mechanism.

11.
J Mol Neurosci ; 74(1): 17, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315329

RESUMEN

Cognitive impairment is a common feature among patients with diffuse glioma. The objective of the study is to investigate the relationship between preoperative cognitive function and clinical as well as molecular factors, firstly based on the new 2021 World Health Organization's updated classification of central nervous system tumors. A total of 110 diffuse glioma patients enrolled underwent preoperative cognitive assessments using the Mini-Mental State Examination and Montreal Cognitive Assessment. Clinical information was collected from medical records, and gene sequencing was performed to analyze the 18 most influenced genes. The differences in cognitive function between patients with and without glioblastoma were compared under both the 2016 and 2021 WHO classification of tumors of the central nervous system to assess their effect of differentiation on cognition. The study found that age, tumor location, and glioblastoma had significant differences in cognitive function. Several genetic alterations were significantly correlated with cognition. Especially, IDH, CIC, and ATRX are positively correlated with several cognitive domains, while most other genes are negatively correlated. For most focused genes, patients with a low number of genetic alterations tended to have better cognitive function. Our study suggested that, in addition to clinical characteristics such as age, histological type, and tumor location, molecular characteristics play a crucial role in cognitive function. Further research into the mechanisms by which tumors affect brain function is expected to enhance the quality of life for glioma patients. This study highlights the importance of considering both clinical and molecular factors in the management of glioma patients to improve cognitive outcomes.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Calidad de Vida , Glioma/patología , Mutación , Organización Mundial de la Salud , Isocitrato Deshidrogenasa/genética
12.
Metabolites ; 14(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38248851

RESUMEN

The three distinct medicinal parts of Angelica sinensis (Oliv.) Diels (Ang) roots are the head, body, and tail (ARH, ARB, and ART, respectively). How endophytic fungi shape the differences in metabolic components among these parts remains unclear. We quantified the distribution of active components and endophytic fungi along the ARH, ARB, and ART and their relationships. Based on the metabolic components and their abundances detected via non-target metabolism, the different medicinal parts were distinguishable. The largest number of dominant metabolic components was present in ART. The difference between ART and ARH was the greatest, and ARB was in a transitional state. The dominant active molecules in ART highlight their effects in haemodynamics improvement, antibacterial, anti-inflammatory, and hormone regulation, while ARH and ARB indicated more haemostasis, blood enrichment, neuromodulation, neuroprotection and tranquilisation, hepatoprotection, and antitumour activities than that of ART. The ARHs, ARBs, and ARTs can also be distinguished from each other based on the endophytic fungi at the microbiome level. The most dominant endophytic fungi were distributed in ART; the differences between ART and ARH were the largest, and ARB was in a transition state, which is consistent with the metabolite distributions. Structural equation modelling showed that the endophytic fungi were highly indicative of the metabolic components. Correlation analysis further identified the endophytic fungi significantly positively correlated with important active components, including Condenascus tortuosus, Sodiomyces alcalophilus, and Pleotrichocladium opacum. The bidirectional multivariate interactions between endophytic fungi and the metabolic components shape their spatial variations along the longitudinal direction in the Ang root.

13.
J Agric Food Chem ; 72(6): 2989-2996, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214488

RESUMEN

The bacterial wilt caused by Ralstonia solanacearum seriously affects crop yield and safety and is difficult to control. Biological activity-guided screening led to the isolation of 11 phenolic compounds including three undescribed compounds (carnemycin H-I and stromemycin B) from the secondary metabolites of a marine-derived Aspergillus ustus. One new compound is an unusual phenolic dimer. Their structures were elucidated by comprehensive spectroscopic data and J-based configurational analysis. The antibacterial activities of the isolated compounds against R. solanacearum were evaluated. Compound 3 exhibited excellent inhibitory activity with an MIC value of 3 µg/mL, which was comparable to that of streptomycin sulfate. Additionally, 3 significantly changed the morphology and inhibited the activity of succinate dehydrogenase (SDH) to interfere with the growth of R. solanacearum. Molecular docking was conducted to clarify the potential mechanisms of compound 3 with SDH. Further in vivo experiments demonstrated that 3 could remarkably inhibit the occurrence of bacterial wilt on tomatoes.


Asunto(s)
Antibacterianos , Aspergillus , Ralstonia solanacearum , Antibacterianos/farmacología , Antibacterianos/química , Simulación del Acoplamiento Molecular , Fenoles/farmacología , Bacterias , Hongos , Enfermedades de las Plantas/microbiología
14.
Future Microbiol ; 19: 117-129, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37934064

RESUMEN

Background: The modulating effects of probiotics and fecal microbiota transplantation (FMT) on gut flora and their direct antitumor effects remain unclear in dirty rats with established primary liver cancer. Materials & methods: Probiotics (VSL#3), FMT or tap water were administrated to three groups. Fresh fecal samples were collected from all groups for 16S rRNA analysis. Liver cancer tissues were collected to evaluate the tumor response. Results: Significant modulation of ß-diversity (p = 0.023) was observed after FMT. VSL#3 and FMT had no inhibitory effect on tumors, but the density of Treg cells decreased (p = 0.031) in the FMT group. Conclusion: FMT is a more attractive alternative to probiotics in dirty rats with liver cancer.


Asunto(s)
Neoplasias Hepáticas , Probióticos , Ratas , Animales , Trasplante de Microbiota Fecal , ARN Ribosómico 16S/genética , Heces , Probióticos/farmacología , Neoplasias Hepáticas/terapia
15.
Plant Physiol ; 194(2): 684-697, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37850874

RESUMEN

The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ligasas/metabolismo , Tamaño de los Órganos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
Neuroendocrinology ; 114(3): 250-262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37913760

RESUMEN

INTRODUCTION: Chronic exposure to excessive endogenous cortisol leads to brain changes in Cushing's disease (CD). However, it remains unclear how CD affects large-scale functional networks (FNs) and whether these effects are reversible after treatment. This study aimed to investigate functional network changes of CD patients and their reversibility in a longitudinal cohort. METHODS: Active CD patients (N = 37) were treated by transsphenoidal pituitary surgery and reexamined 3 months later. FNs were computed from resting-state fMRI data of the CD patients and matched normal controls (NCs, N = 37). A pattern classifier was built on the FNs to distinguish active CD patients from controls and applied to FNs of the CD patients at the 3-month follow-up. Two subgroups of endocrine-remitted CD patients were identified according to their classification scores, referred to as image-based phenotypically (IBP) recovered and unrecovered CD patients, respectively. The informative FNs identified by the classification model were compared between NCs, active CD patients, and endocrine-remitted patients as well as between IBP recovered and unrecovered CD patients to explore their functional network reversibility. RESULTS: All 37 CD patients reached endocrine remission after treatment. The classification model identified three informative FNs, including cerebellar network (CerebN), fronto-parietal network (FPN), and default mode network. Among them, CerebN and FPN partially recovered toward normal at 3 months after treatment. Moreover, the informative FNs were correlated with 24-h urinary-free cortisol and emotion scales in CD patients. CONCLUSION: These findings suggest that CD patients have aberrant FNs that are partially reversible toward normal after treatment.


Asunto(s)
Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Humanos , Estudios Longitudinales , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/cirugía , Hidrocortisona , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Imagen por Resonancia Magnética
17.
IDCases ; 34: e01903, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928816

RESUMEN

Nocardia are opportunistic pathogens mainly affecting immunocompromised individuals. Nocardia asiatica, a novel species, can cause severe infections. We present a case of multiple brain abscesses due to Nocardia asiatica, discussing its diagnosis and treatment. In January 2022, a 27-year-old Chinese woman with a history of atypical membranous nephropathy presented with low-grade fever, cough, limb weakness, and headaches. Imaging revealed lung and brain lesions. Neurological symptoms worsened over time, culminating in recurrent seizures and severe headaches. A brain MRI confirmed multiple abscesses. Craniotomy and lesion removal were performed, leading to a diagnosis of brain abscesses caused by Nocardia asiatica. Empirical antibiotics were followed by targeted regimen. After successful treatment, the patient remained symptom-free during follow-ups. Nocardia asiatica multiple brain abscesses are exceedingly rare. This case underscores the importance of considering nocardiosis in immunosuppressed patients presenting with neurological symptoms. Timely neurosurgical intervention and effective antibiotic therapy are crucial. Metagenomic next-generation sequencing proved invaluable for rapid diagnosis. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) and a carbapenem followed by TMP-SMX alone achieved disease control. This case contributes to the understanding of Nocardia asiatica infections and highlights the role of neurosurgical procedures in managing disseminated nocardiosis.

18.
Front Endocrinol (Lausanne) ; 14: 1259529, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886642

RESUMEN

Purpose: To investigate the prevalence of low blood testosterone level (LTL) and its determinant factors among active male acromegaly patients, as well as the effect of surgery on LTL in male acromegaly patients. Methods: A retrospective, single-center study focused on 252 male acromegaly patients aged 18 years-60 years diagnosed in the Peking Union Medical College Hospital from January 2015 to December 2018 was carried out. The measurements of preoperative and postoperative testosterone levels, serum growth hormone (GH), insulin-like growth factor 1 (IGF-1), and other clinical data were analyzed. Results: Forty per cent of subjects included were diagnosed with LTL pre surgery. Patients were divided into normal testosterone level (NTL) and LTL groups based on their testosterone level. There were significant differences (p < 0.01) between groups in the presence of macroadenomas, invasion of the cavernous sinus, compression of the optic chiasm, and serum GH and prolactin levels pre surgery. Invasion of the cavernous sinus [odds ratio (OR) = 4.299; p = 0.000] and serum prolactin level (OR = 1.023, p = 0.001) were independent predictors of LTLs in male patients before surgical intervention. A total of 67.9% of LTL patients recovered during the follow-up, with a new-onset rate of 3.4%. Body mass index, invasion of the cavernous sinus, GH, IGF-1, and prolactin levels, the presence of a prolactin-secreting tumor, and recovery from acromegaly were significantly different (p < 0.05) in the NTL group and in the LTL group during the follow-up. The presence of a prolactin-secreting tumor (OR = 0.224; p = 0.001) and recovery from acromegaly (OR = 0.168; p = 0.006) were independent predictors of LTLs in male acromegaly patients during the follow-up. Conclusion: The invasiveness of tumor and levels of blood prolactin are independent factors for LTLs before surgery, whereas GH and IGF-1 levels are not. Most male patients can recover from LTL after tumor restriction surgery: those who recover from acromegaly have a better chance of recovering from LTL.


Asunto(s)
Acromegalia , Neoplasias Hipofisarias , Humanos , Masculino , Acromegalia/cirugía , Factor I del Crecimiento Similar a la Insulina/metabolismo , Estudios Prospectivos , Prolactina , Estudios Retrospectivos , Neoplasias Hipofisarias/patología , Testosterona
19.
Cancer Med ; 12(18): 18666-18678, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37667984

RESUMEN

BACKGROUND: The latest fifth edition of the World Health Organization (WHO) classification of the central nervous system (CNS) tumors (WHO CNS 5 classification) released in 2021 defined astrocytoma, IDH-mutant, Grade 4. However, the understanding of this subtype is still limited. We conducted this study to describe the features of astrocytoma, IDH-mutant, Grade 4 and explored the similarities and differences between histological and molecular subtypes. METHODS: Patients who underwent surgery from January 2011 to January 2022, classified as astrocytoma, IDH-mutant, Grade 4 were included in this study. Clinical, radiological, histopathological, molecular pathological, and survival data were collected for analysis. RESULTS: Altogether 33 patients with astrocytoma, IDH-mutant, Grade 4 were selected, including 20 with histological and 13 with molecular WHO Grade 4 astrocytoma. Tumor enhancement, intratumoral-necrosis like presentation, larger peritumoral edema, and more explicit tumor margins were frequently observed in histological WHO Grade 4 astrocytoma. Additionally, molecular WHO Grade 4 astrocytoma showed a tendency for relatively longer overall survival, while a statistical significance was not reached (47 vs. 25 months, p = 0.22). TP53, CDK6, and PIK3CA alteration was commonly observed, while PIK3R1 (p = 0.033), Notch1 (p = 0.027), and Mycn (p = 0.027) alterations may affect the overall survival of molecular WHO Grade 4 astrocytomas. CONCLUSIONS: Our study scrutinized IDH-mutant, Grade 4 astrocytoma. Therefore, further classification should be considered as the prognosis varied between histological and molecular WHO Grade 4 astrocytomas. Notably, therapies aiming at PIK3R1, Notch 1, and Mycn may be beneficial.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioblastoma , Humanos , Proteína Proto-Oncogénica N-Myc , Isocitrato Deshidrogenasa/genética , Mutación , Astrocitoma/genética , Neoplasias del Sistema Nervioso Central/genética , Organización Mundial de la Salud
20.
Int J Biol Sci ; 19(12): 3762-3780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37564196

RESUMEN

The immune checkpoint B7-H3 (CD276), a member of the B7 family with immunoregulatory properties, has been identified recently as a novel target for immunotherapy for refractory blood cancers and solid malignant tumors. While research on B7-H3 in brain malignancies is limited, there is growing interest in exploring its therapeutic potential in this context. B7-H3 plays a crucial role in regulating the functions of immune cells, cancer-associated fibroblasts, and endothelial cells within the tumor microenvironment, contributing to the creation of a pro-tumorigenic milieu. This microenvironment promotes uncontrolled cancer cell proliferation, enhanced metabolism, increased cancer stemness, and resistance to standard treatments. Blocking B7-H3 and terminating its immunosuppressive function is expected to improve anti-tumor immune responses and, in turn, ameliorate the progression of tumors. Results from preclinical or observative studies and early-phase trials targeting B7-H3 have revealed promising anti-tumor efficacy and acceptable toxicity in glioblastoma (GBM), diffuse intrinsic pontine glioma (DIPG), medulloblastoma, neuroblastoma, craniopharyngioma, atypical teratoid/rhabdoid tumor, and brain metastases. Ongoing clinical trials are now investigating the use of CAR-T cell therapy and antibody-drug conjugate therapy, either alone or in combination with standard treatments or other therapeutic approaches, targeting B7-H3 in refractory or recurrent GBMs, DIPGs, neuroblastomas, medulloblastomas, ependymomas, and metastatic brain tumors. These trials hold promise for providing effective treatment options for these challenging intracranial malignancies in both adult and pediatric populations.


Asunto(s)
Neoplasias Encefálicas , Neuroblastoma , Humanos , Antígenos B7/metabolismo , Neoplasias Encefálicas/metabolismo , Células Endoteliales/metabolismo , Inmunoterapia/métodos , Inmunoterapia Adoptiva/métodos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...