Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(7): 103814, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38718538

RESUMEN

Yolk Peritonitis can lead to a rapid decline in egg production, which seriously affects the health of laying hens and the profitability of chicken farms. Escherichia coli (E. coli) is the most common cause of yolk peritonitis in laying hens. In this study, bacterial samples were collected from the ovaries and fallopian tubes of laying hens with suspected yolk peritonitis from a laying farm in Jiangsu Province, and their pathogenicity and drug resistance were investigated. Initially, morphological and biochemical detection methods were employed to isolate and identify the pathogenic bacteria. The results showed that a total of 16 strains of E. coli were isolated from laying hens with yolk peritonitis. Subsequently, the drug resistance and pathogenicity of a randomly selected E. coli strain were analyzed and predicted by genome sequencing technology, and the drug resistance of E. coli was verified by drug sensitivity test and PCR. Finally, the virulence was verified by infection experiment in mice. The study revealed that the egg-yolk peritonitis in laying hens was caused by E. coli infection, and the genome sequencing analysis revealed that the bacteria had multidrug resistance and high virulence. The drug susceptibility testing indicates that E. coli exhibited resistance to aminoglycosides, ß-lactam, macrolides, fluoroquinolones, and sulfonamides. In this study, resistance genes including KdpE, aadA5, APH(3 ")-ID, APH(6)-ID, and TEM-1 were identified, and their expression levels varied across different stages of bacterial growth. The results of virulence analysis indicated a mortality rate of 50% in mice infected with E. coli at a concentration of 2.985 × 107 CFU/mL. E. coli infection resulted in damage to various tissues and organs in mice, with the intestinal tissue structure being the most severely affected. This study provides a reference for the study of drug resistance mechanisms in E. coli and provides valuable insights into the selection of drugs for the treatment of vitelline peritonitis.

2.
Sci Total Environ ; 926: 171921, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522525

RESUMEN

Exposure to Cr and/or Ni can have widespread implications on the environment and health. However, the specific toxic effects of chronic Cr and Ni co-exposure on mice liver have not been reported. To ascertain the combined toxic effects of chronic Cr and Ni co-exposure on liver damage in mice, 80 6-week-old female C57BL/6 J mice were randomly divided into 4 groups: the Con group, Cr group (Cr+6 50 mg/L), Ni group (Ni+2 110 mg/L), and Cr + Ni group (Cr+6 50 mg/L + Ni+2 110 mg/L). The trial period lasted for 16 weeks. The results showed that Cr+6 and/or Ni+2 increased liver weight and liver index (P < 0.05) in mice, caused histological abnormality and ultrastructural damage, and micronutrients imbalance in mice liver. These findings serve as the basis for subsequent experiments. Compared with the individual exposure group, chronic Cr and Ni co-exposure resulted in decreased levels and activities of ALT, AST, MDA, T-AOC, and T-SOD (P < 0.05) in liver tissue, and decreased the mRNA expression levels of the TLR4/mTOR pathway related factors (TLR4, TRAM, TRIF, TBK-1, IRF-3, MyD88, IRAK-4, TRAF6, TAK-1, IKKß, NF-κB, IL-1ß, IL-6, TNFα, ULK1, Beclin 1, LC3) (P < 0.05) and decreased the protein expression levels of the factors (TLR4, MyD88, TRAF6, NF-κB p50, IL-6, TNFα, ULK1, LC3II/LC3I) (P < 0.05). Moreover, factorial analysis revealed the interaction between Cr and Ni, which was manifested as antagonistic effects on Cr concentration, Ni concentration, and TLR4, MyD88, NF-κB, mTOR, LC3, and p62 mRNA expression levels. In conclusion, the TLR4/mTOR pathway as a mechanism through which chronic Cr and Ni co-exposure induce liver inflammation and autophagy in mice, and there was an antagonistic effect between Cr and Ni. The above results provided a theoretical basis for understanding the underlying processes.


Asunto(s)
Autofagia , Cromo , Inflamación , Hígado , FN-kappa B , Níquel , Transducción de Señal , Receptor Toll-Like 4 , Animales , Femenino , Ratones , Inflamación/inducido químicamente , Interleucina-6/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/metabolismo , ARN Mensajero , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Cromo/metabolismo , Cromo/toxicidad , Níquel/metabolismo , Níquel/toxicidad
3.
Poult Sci ; 103(5): 103388, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428352

RESUMEN

Pulmonary artery remodeling is a characteristic feature of broiler ascites syndrome (BAS). Pulmonary artery endothelial cells (PAECs) regulated by HIF-1α play a critical role in pulmonary artery remodeling, but the underlying mechanisms of HIF-1α in BAS remain unclear. In this experiment, primary PAECs were cultured in vitro and were identified by coagulation factor VIII. After hypoxia and RNA interference, the mRNA and protein expression levels of HIF-1α and VEGF were determined by qPCR and Western blotting. The transcriptome profiles of PAECs were obtained by RNA sequencing. Our results showed that the positive rate of PAECs was more than 90%, hypoxia-induced promoted the proliferation and apoptosis of PAECs, and RNA interference significantly downregulated the expression of HIF-1α, inhibited the proliferation of PAECs, and promoted the apoptosis of PAECs. In addition, transcriptome sequencing analysis indicated that HIF-1α may regulate broiler ascites syndrome by mediating COL4A, vitronectin, vWF, ITGα8, and MKP-5 in the ECM, CAMs and MAPK pathways in PAECs. These studies lay the foundation for further exploration of the mechanisms of pulmonary artery remodeling, and HIF-1α may be a potentially effective gene for the prevention and treatment of BAS.


Asunto(s)
Pollos , Células Endoteliales , Subunidad alfa del Factor 1 Inducible por Hipoxia , Arteria Pulmonar , Interferencia de ARN , Animales , Arteria Pulmonar/metabolismo , Arteria Pulmonar/citología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Endoteliales/fisiología , Células Endoteliales/metabolismo , Proliferación Celular , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Enfermedades de las Aves de Corral/genética , Ascitis/veterinaria , Ascitis/genética , Apoptosis , Células Cultivadas
4.
Poult Sci ; 103(4): 103482, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387286

RESUMEN

Fatty liver hemorrhagic syndrome (FLHS) is a prevalent metabolic disorder observed in egg-laying hens, characterized by fatty deposits and cellular steatosis in the liver. Our preliminary investigations have revealed a marked decrease in the concentration of butyric acid in the FLHS strain of laying hens. It has been established that sodium butyrate (NaB) protects against metabolic disorders. However, the underlying mechanism by which butyrate modulates hepato-lipid metabolism to a great extent remains unexplored. In this study, we constructed an isolated in vitro model of chicken primary hepatocytes to induce hepatic steatosis by free fatty acids (FFA). Our results demonstrate that treatment with NaB effectively mitigated FFA-induced hepatic steatosis in chicken hepatocytes by inhibiting lipid accumulation, downregulating the mRNA expression of lipo-synthesis-related genes (sterol regulatory element binding transcription factor 1 (SREBF1), acetyl-CoA carboxylase 1(ACC1), fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), liver X receptor α (LXRα), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)) (P < 0.05), and upregulating the mRNA and protein expression of AMP-activated protein kinase α1 (AMPKα1), peroxisome proliferator-activated receptor α (PPARα), and carnitine palmitoyl-transferase 1A (CPT1A) (P < 0.05). Moreover, AMPK and PPARα inhibitors (Compound C (Comp C) and GW6471, respectively) reversed the protective effects of NaB against FFA-induced hepatic steatosis by blocking the AMPK/PPARα pathway, leading to lipid droplet accumulation and triglyceride (TG) contents in chicken primary hepatocytes. With these findings, NaB can alleviate hepatocyte lipoatrophy injury by activating the AMPK/PPARα pathway, promoting fatty acid oxidation, and reducing lipid synthesis in chicken hepatocytes, potentially being able to provide new ideas for the treatment of FLHS.


Asunto(s)
Anomalías Múltiples , Anomalías Craneofaciales , Hígado Graso , Trastornos del Crecimiento , Defectos del Tabique Interventricular , PPAR alfa , Animales , Femenino , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/farmacología , Pollos/genética , Ácidos Grasos no Esterificados/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/tratamiento farmacológico , Hígado Graso/veterinaria , Hígado/metabolismo , Hepatocitos , Metabolismo de los Lípidos , ARN Mensajero/metabolismo , Ácidos Grasos/metabolismo
5.
Antioxidants (Basel) ; 13(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38397738

RESUMEN

Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional metabolic disease commonly observed in high-yielding laying hens. Sodium butyrate (NaB) and ferroptosis were reported to contribute to the pathogenesis of fatty liver-related diseases. However, the underlying mechanism of NaB in FLHS and whether it mediates ferroptosis remains unclear. A chicken primary hepatocyte induced by free fatty acids (FFAs, keeping the ratio of sodium oleate and sodium palmitate concentrations at 2:1) was established, which received treatments with NaB, the ferroptosis inducer RAS-selective lethal 3 (RSL3), and the inhibitor ferrostatin-1 (Fer-1). As a result, NaB increased biochemical and lipid metabolism indices, and the antioxidant level, while inhibiting intracellular ROS accumulation and the activation of the ferroptosis signaling pathway, as evidenced by a reduction in intracellular iron concentration, upregulated GPX4 and xCT expression, and inhibited NCOA4 and ACSL4 expression. Furthermore, treatment with Fer-1 reinforced the protective effects of NaB, while RSL3 reversed it by blocking the ROS/GPX4/ferroptosis pathway, leading to the accumulation of lipid droplets and oxidative stress. Collectively, our findings demonstrated that NaB protects hepatocytes by regulating the ROS/GPX4-mediated ferroptosis pathway, providing a new strategy and target for the treatment of FLHS.

6.
Biomed Pharmacother ; 171: 116205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38290252

RESUMEN

Atrazine (ATR), a water-soluble herbicide commonly used to control broad-leaf and monocotyledonous weeds, presents a significant risk to environmental soil and water quality. Exposure to ATR adversely affects human and animal health, frequently resulting in cardiac impairment. Curcumin (Cur), an acidic polyphenol derivative from plants acclaimed for its pronounced anti-inflammatory and antioxidant properties, has garnered interest as a potential therapeutic agent. However, whether it has the potential to ameliorate ATR-induced cardiac toxicity via modulation of endoplasmic reticulum stress (ERS) and apoptosis pathways in mice remains unclear. Our results showed that Cur supplementation attenuates ATR-induced cardiotoxicity, evidenced by decrease in creatine kinase and lactate dehydrogenase, key biochemical markers of myocardial injury, which have a more significant protecting effect in high-dose ATR induced injury. Histopathological and electron microscopy examinations further solidified these findings, demonstrating an amelioration in organellar damage, particularly in endoplasmic reticulum swelling and subsequent mitochondrial impairment. Additionally, ATR exposure augments ERS and triggers apoptotic pathways, as indicated by the upregulation of ERS-related gene expression (ATF6, CHOP, IRE1, GRP78) and pro-apoptotic markers (BAX, BAK1, Caspase3, Caspase. Intriguingly, Cur counteracts this detrimental response, significantly reducing ERS and pro-apoptotic signals at both transcriptional and translational levels. Collectively, our findings illuminate Cur's cardioprotective effect against ATR-induced injury, primarily through its anti-ERS and anti-apoptotic activities, underscoring Cur's potential as a therapeutic for ATR-induced cardiotoxicity.


Asunto(s)
Atrazina , Curcumina , Humanos , Ratones , Animales , Cardiotoxicidad/metabolismo , Curcumina/farmacología , Apoptosis , Estrés del Retículo Endoplásmico , Transducción de Señal , Factor de Transcripción Activador 6/metabolismo
7.
Sci Total Environ ; 915: 169853, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38218477

RESUMEN

The pollution and toxic effects of hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] have become worldwide public health issues. However, the potential detailed effects of chronic combined Cr(VI) and Ni exposure on colonic inflammation in mice have not been reported. In this study, 16S rDNA sequencing, metabolomics data analysis, qPCR and other related experimental techniques were used to comprehensively explore the mechanism of toxic damage and the inflammatory response of the colon in mice under the co-toxicity of chronic hexavalent chromium and nickel. The results showed that long-term exposure to Cr(VI) and/or Ni resulted in an imbalance of trace elements in the colon of mice with significant inflammatory infiltration of tissues. Moreover, Cr(VI) and/or Ni poisoning upregulated the expression levels of IL-6, IL-18, IL-1ß, TNF-α, IFN-γ, JAK2 and STAT3 mRNA, and downregulated IL-10 mRNA, which was highly consistent with the trend in protein expression. Combined with multiomics analysis, Cr(VI) and/or Ni could change the α diversity and ß diversity of the gut microbiota and induce significant differential changes in metabolites such as Pyroglu-Glu-Lys, Val-Asp-Arg, stearidonic acid, and 20-hydroxyarachidonic acid. They are also associated with disorders of important metabolic pathways such as lipid metabolism and amino acid metabolism. Correlation analysis revealed that there was a significant correlation between gut microbes and metabolites (P < 0.05). In summary, based on the advantages of comprehensive analysis of high-throughput sequencing sets, these results suggest that chronic exposure to Cr(VI) and Ni in combination can cause microbial flora imbalances, induce metabolic disorders, and subsequently cause colonic damage in mice. These data provide new insights into the toxicology and molecular mechanisms of Cr(VI) and Ni.


Asunto(s)
Cromo , Níquel , Animales , Ratones , Níquel/toxicidad , Cromo/análisis , Inflamación , ARN Mensajero
8.
Environ Pollut ; 343: 123232, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171427

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known for its environmental endocrine-disrupting properties, posing potential risks to various organs. However, the precise impact of DEHP on intestinal health and its contribution to the initiation of intestinal inflammation remains elucidated. This study aims to investigate the underlying mechanisms of DEHP-induced intestinal inflammation in mice, specifically focusing on the complex interplay between the gut microbiota-metabolite axis and associated pathophysiological alterations. Our findings showed that DEHP-induced damage of multiple organs systemically, as indicated by abnormal liver and kidney biochemical markers, along with a disrupted ileum morphology. Additionally, DEHP exposure disrupted gut barrier function, causing intestinal inflammation characterized by bacterial translocation and alterations in defense and inflammation-related gene expressions. Moreover, 16S rRNA analysis suggested that DEHP-induced gut microbial remodeling is characterized by an upregulation of detrimental bacteria (Erysipelotrichaceae) and a downregulation of beneficial bacteria (Muribaculaceae, Ruminococcaceae, and Lachnospiraceae). Metabolomics analysis revealed DEHP perturbed gut metabolic homeostasis, particularly affecting the degradation of aromatic compounds, which generated an aberrant activation of the AhR and NF-κB, subsequently causing intestinal inflammation. Consequently, our results elucidate the mechanistic link between disrupted gut microbiota and metabolome and the initiation of DEHP-induced intestinal inflammation, mediated through the AhR/NF-κB signaling pathway.


Asunto(s)
Dietilhexil Ftalato , Microbioma Gastrointestinal , Ácidos Ftálicos , Ratones , Animales , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , FN-kappa B/metabolismo , ARN Ribosómico 16S , Inflamación/inducido químicamente
9.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139070

RESUMEN

Hexavalent chromium (Cr(VI)) is a hazardous substance that poses significant risks to environmental ecosystems and animal organisms. However, the specific consequences of Cr(VI) exposure in terms of liver damage remain incompletely understood. This study aims to elucidate the mechanism by which Cr(VI) disrupts mitochondrial dynamics, leading to hepatic injury in ducks. Forty-eight healthy 8-day-old ducks were divided into four groups and subjected to diets containing varying doses of Cr(VI) (0, 9.28, 46.4, and 232 mg/kg) for 49 days. Our results demonstrated that Cr(VI) exposure resulted in disarranged liver lobular vacuolation, along with increasing the serum levels of ALT, AST, and AKP in a dose-dependent manner, which indicated liver damage. Furthermore, Cr(VI) exposure induced oxidative stress by reducing the activities of T-SOD, SOD, GSH-Px, GSH, and CAT, while increasing the contents of MDA and H2O2. Moreover, Cr(VI) exposure downregulated the activities of CS and MDH, resulting in energy disturbance, as evidenced by the reduced AMPK/p-AMPK ratio and PGC-1α protein expression. Additionally, Cr(VI) exposure disrupted mitochondrial dynamics through decreased expression of OPA1, Mfn1, and Mfn2 and increased expression of Drp-1, Fis1, and MFF proteins. This disruption ultimately triggered mitochondria-mediated apoptosis, as evidenced by elevated levels of caspase-3, Cyt C, and Bax, along with decreased expression of Bcl-2 and the Bcl-2/Bax ratio, at both the protein and mRNA levels. In summary, this study highlights that Cr(VI) exposure induces oxidative stress, inhibits the AMPK-PGC-1α pathway, disrupts mitochondrial dynamics, and triggers liver cell apoptosis in ducks.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Patos , Animales , Proteína X Asociada a bcl-2/metabolismo , Dinámicas Mitocondriales , Ecosistema , Peróxido de Hidrógeno , Hígado/metabolismo , Apoptosis , Cromo/toxicidad , Proteínas Proto-Oncogénicas c-bcl-2/genética , Superóxido Dismutasa
10.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139133

RESUMEN

Berberine (BBR) is a natural alkaloid with multiple biotical effects that has potential as a treatment for fatty liver hemorrhagic syndrome (FLHS). However, the mechanism underlying the protective effect of BBR against FLHS remains unclear. The present study aimed to investigate the effect of BBR on FLHS induced by a high-energy, low-protein (HELP) diet and explore the involvement of the gut microbiota and bile acid metabolism in the protective effects. A total of 90 healthy 140-day-old Hy-line laying hens were randomly divided into three groups, including a control group (fed a basic diet), a HELP group (fed a HELP diet), and a HELP+BBR group (high-energy, high-protein diet supplemented with BBR instead of maize). Our results show that BBR supplementation alleviated liver injury and hepatic steatosis in laying hens. Moreover, BBR supplementation could significantly regulate the gut's microbial composition, increasing the abundance of Actinobacteria and Romboutsia. In addition, the BBR supplement altered the profile of bile acid. Furthermore, the gut microbiota participates in bile acid metabolism, especially taurochenodeoxycholic acid and α-muricholic acid. BBR supplementation could regulate the expression of genes and proteins related to glucose metabolism, lipid synthesis (FAS, SREBP-1c), and bile acid synthesis (FXR, CYP27a1). Collectively, our findings demonstrate that BBR might be a potential feed additive for preventing FLHS by regulating the gut microbiota and bile acid metabolism.


Asunto(s)
Berberina , Hígado Graso , Microbioma Gastrointestinal , Animales , Femenino , Berberina/farmacología , Berberina/uso terapéutico , Berberina/metabolismo , Dieta con Restricción de Proteínas , Pollos , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hígado Graso/prevención & control , Hígado/metabolismo , Ácidos y Sales Biliares/metabolismo
12.
Vet Microbiol ; 286: 109891, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866328

RESUMEN

Nephropathogenic infectious bronchitis virus (NIBV) infections continue to pose a significant hazard in the poultry industry. Baicalin is a natural flavonoid that has been reported to have antiviral activity, but its function in NIBV infection largely remains unclear. In this study, the antiviral mechanism of baicalin in the spleen of NIBV-infected chicks was mainly elucidated in mitophagy and macrophage polarization. 28-day-old Hy-Line brown chicks were randomly divided into four groups: the group of chicks was treated intranasally (in) with normal saline (0.2 mL) and subsequently divided into two groups: the Con group (basic diet), the Con+BA group (basic diet+10 mg/kg Baicalin); another group of chicks was intranasally infected with SX9 (10-5/0.2 mL) and subsequently divided into two groups: the Dis group (basic diet), the Dis+BA group (basic diet+10 mg/kg Baicalin). Spleen tissues were collected at 3, 7, and 11 days post infection (dpi). NIBV copy number was strikingly decreased in the spleens under BA treatment with infectious time. Histopathological examination showed enlarged and hemorrhagic white pulp and no clearly defined boundary between white pulp and red pulp in the Dis group, which could be improved by BA treatment. Meanwhile, the loss of cristae structure and vacuolization in mitochondria caused by NIBV infection was repaired in the Dis+BA group by ultrastructure observation. In addition, BA treatment inhibited the induction of mitophagy by NIBV infection. BA treatment also promoted innate immunity by enhancing type I IFN levels. Moreover, BA treatment up-regulated M1-related cytokines (iNOS, TNF-α, IL-1ß, IL-6) and inhibited M2-related cytokines (ARG2, IL-4, IL-10, Pparg) at the mRNA and protein levels. However, the results from the splenic tissues at 11 dpi are opposite results from 3 and 7 dpi. Immunofluorescence analysis for M1 macrophage marker iNOS and M2 macrophage marker CD163 further validated this result. Collectively, BA inhibited mitophagy and triggered IFN activation, and M1 polarization, which contributed to the inhibition of NIBV infection.


Asunto(s)
Virus de la Bronquitis Infecciosa , Animales , Bazo , Mitofagia , Pollos , Flavonoides/farmacología , Citocinas/genética , Macrófagos , Antivirales
13.
Int J Biol Macromol ; 253(Pt 8): 127635, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37884239

RESUMEN

Beclin1, also known as ATG6, has been shown to be closely related to coronavirus, however, the link between Beclin1 and nephropathogenic infectious bronchitis virus (NIBV) has been poorly investigated and there are no available antibodies specifically targeting the chicken Beclin1 protein. The study aimed to prepare and assay a polyclonal antibody to Beclin1, enabling a deeper understanding of the mechanism of action of Beclin1 in NIBV. In this study, we amplified the chicken Beclin1 target gene and constructed a recombinant plasmid using prokaryotic expression techniques, then obtained the recombinant target protein by induced expression. Finally, the serum is obtained by immunizing rabbits with the purified and concentrated protein. The results show that the antiserum potency of the ELISA assay was >1:204800. By western blotting and immunofluorescence, the antibodies we prepared specifically recognized the chicken Beclin1 protein, which is mainly found in the nucleus of trachea, lung, kidney, spleen and fabricant cells. NIBV infection significantly decreased the expression of Beclin1 in the trachea, but increased in others. We have successfully prepared specific rabbit anti-chicken Beclin1 polyclonal antibodies, and detected changes in tissues of diseased chickens infected with NIBV, laying the foundation for further studies on the role of Beclin1 in avian diseases.


Asunto(s)
Pollos , Virus de la Bronquitis Infecciosa , Animales , Conejos , Virus de la Bronquitis Infecciosa/genética , Beclina-1/genética , Beclina-1/metabolismo , Anticuerpos , Riñón/metabolismo , Western Blotting
14.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37843035

RESUMEN

The adverse effects of chronic heat stress (CHS)-induced fatty liver syndrome on laying hens during the egg-producing stages have been wildly documented. However, until nowadays, the CHS responses of growing laying hens as well as its alleviating effects of vitamin C are rarely reported. In this study, 12-wk-old laying hens were subjected to CHS at 36 °C for 10 h/d for 3 wk with or without dietary supplementation of 300 mg/kg vitamin C. Results showed that CHS significantly impaired the growth performances and the liver functions of birds, as characterized by reduced feed intake and body weight, increased hepatic lipid accumulation and serum concentrations of TG, ALT, and AST, as well as the abnormal expression patterns of the lipid metabolism-related genes. Vitamin C supplementation successfully mitigated the lipid accumulation, while showing no alleviating effect on the serum contents of ALT or AST, which are two key indicators of liver functions. Metabolomic analysis based on UPLC-Q-TOF/MS identified 173 differential metabolites from the HS and HSV group samples, and they are mainly enriched in the pathways related to the cellular components, vitamin and amino acid metabolism and energy substance metabolism. The results indicate that CHS-induced hepatic lipid deposition in growing laying hens is effectively alleviated by dietary supplementation of vitamin C, which is probably resulted from the alterations of hepatocellular metabolic patterns.


Chronic heat stress (CHS)-induced fatty liver syndrome (FLS) is one of the major problems faced in poultry industry. However, the heat stress response as well as the alleviating strategies for growing laying hens is rarely concerned until nowadays. In this study, 12-wk-old laying hens were subjected to the CHS condition with or without dietary supplementation of 300 mg/kg vitamin C, we found that CHS can also remarkably impair the growth performance and liver functions and induce the hepatic lipid metabolism disorders in the growing laying hens. Vitamin C supplementation successfully mitigated the hepatic lipid accumulation, while showed no alleviating effect on the liver functions. Metabolomic analysis further identified 173 differential metabolites between CHS and HSV groups, which are mainly enriched in the pathways including the cellular components, vitamin and amino acid metabolism and the energy substance metabolism. The results suggest that vitamin C supplementation can effectively alleviate the hepatic lipid deposition in growing laying hens under CHS probably through altering their energy metabolism patterns.


Asunto(s)
Ácido Ascórbico , Suplementos Dietéticos , Animales , Femenino , Ácido Ascórbico/farmacología , Suplementos Dietéticos/análisis , Dieta/veterinaria , Metabolismo de los Lípidos , Pollos/fisiología , Vitaminas/metabolismo , Respuesta al Choque Térmico , Hígado/metabolismo , Lípidos , Alimentación Animal/análisis
15.
Animals (Basel) ; 13(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37443849

RESUMEN

Energy deficiency causes multiple organ dysfunctions after LPS induction. Quercetin is a phenolic compound found in herbal medicines. However, the effects of quercetin in alleviating LPS-induced energy deficiency remain unclear. In the present study, an in vivo LPS-induced inflammation model was established in chicken embryos. Specific pathogen-free chicken embryos (n = 120) were allocated to control, PBS with or without ethanol, quercetin (10, 20, or 40 nmol, respectively), and LPS (125 ng/egg) with or without quercetin groups. Fifteen day old embryonated eggs were injected with the abovementioned solutions via the allantoic cavity. On embryonic day 19, the tissues of the embryos were collected for histopathological examination using frozen oil red O staining, RNA extraction, real-time quantitative polymerase chain reaction, and immunohistochemical investigations. The glycogen and lipid contents in the liver increased after LPS stimulation as compared with the PBS group, whereas quercetin decreased the accumulation as compared with the LPS group. The mRNA expressions of AMPKα1 and AMPKα2 in the duodena, ceca, and livers were upregulated after LPS induction as compared with the PBS group, while quercetin could downregulate these expressions as compared with the LPS group. The immunopositivity of AMPKα2 in the villus, crypt, lamina propria, tunica muscularis, and myenteric plexus in the duodena and in the cytoplasms of hepatocytes significantly increased after LPS induction when compared with the PBS group (p < 0.01), whereas the immunopositivity to AMPKα2 in the quercetin treatment group significantly decreased when compared with the LPS group (p < 0.01 or p < 0.05). The LPS-induced high expressions of transcription factor PPARα and glucose transporter (SGLT1) were blocked by quercetin in the duodena, ceca, and livers. Quercetin treatment improved the LPS-induced decrease in APOA4 in the duodena, ceca, and livers. The mRNA expression of PEPT1 in the duodena and ceca increased after LPS challenge, whereas quercetin could downregulate PEPT1 gene expression. These data demonstrate that quercetin improved the energy deficiency induced by LPS in chicken embryos. The LPS-induced inflammation model was established to avoid the effect of LPS exposure from the environment and intestinal flora. The results form the basis the administration of quercetin pretreatment (in ovo infection) to improve the energy state of chicken embryos and improve the inflammation response.

16.
BMC Microbiol ; 23(1): 180, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420170

RESUMEN

This study aimed to understand the changes in the milk and gut microbiota of dairy cows with mastitis, and to further explore the relationship between mastitis and the microbiota. In this study, we extracted microbial DNA from healthy and mastitis cows and performed high-throughput sequencing using the Illumina NovaSeq sequencing platform. OTU clustering was performed to analyze complexity, multi-sample comparisons, differences in community structure between groups, and differential analysis of species composition and abundance. The results showed that there were differences in microbial diversity and community composition in the milk and feces of normal and mastitis cows, where the diversity of microbiota decreased and species abundance increased in the mastitis group. There was a significant difference in the flora composition of the two groups of samples (P < 0.05), especially at the genus level, the difference in the milk samples was Sphingomonas (P < 0.05) and Stenotrophomonas (P < 0.05), the differences in stool samples were Alistipes (P < 0.05), Flavonifractor (P < 0.05), Agathobacter (P < 0.05) and Pygmaiobacter (P < 0.05). In conclusion, the microbiota of the udder and intestinal tissues of dairy cows suffering from mastitis will change significantly. This suggests that the development of mastitis is related to the endogenous pathway of microbial intestinal mammary glands, but the mechanisms involved need further study.


Asunto(s)
Lactobacillales , Mastitis , Microbiota , Femenino , Bovinos , Animales , Humanos , Leche , ADN Ribosómico/genética , Secuenciación de Nucleótidos de Alto Rendimiento
17.
Int J Mol Sci ; 24(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298392

RESUMEN

Oxidative stress can adversely affect the health status of the body, more specifically by causing intestinal damage by disrupting the permeability of the intestinal barrier. This is closely related to intestinal epithelial cell apoptosis caused by the mass production of reactive oxygen species (ROS). Baicalin (Bai) is a major active ingredient in Chinese traditional herbal medicine that has antioxidant, anti-inflammatory, and anti-cancer properties. The purpose of this study was to explore the underlying mechanisms by which Bai protects against hydrogen peroxide (H2O2)-induced intestinal injury in vitro. Our results indicated that H2O2 treatment caused injury to IPEC-J2 cells, resulting in their apoptosis. However, Bai treatment attenuated H2O2-induced IPEC-J2 cell damage by up-regulating the mRNA and protein expression of ZO-1, Occludin, and Claudin1. Besides, Bai treatment prevented H2O2-induced ROS and MDA production and increased the activities of antioxidant enzymes (SOD, CAT, and GSH-PX). Moreover, Bai treatment also attenuated H2O2-induced apoptosis in IPEC-J2 cells by down-regulating the mRNA expression of Caspase-3 and Caspase-9 and up-regulating the mRNA expression of FAS and Bax, which are involved in the inhibition of mitochondrial pathways. The expression of Nrf2 increased after treatment with H2O2, and Bai can alleviate this phenomenon. Meanwhile, Bai down-regulated the ratio of phosphorylated AMPK to unphosphorylated AMPK, which is indicative of the mRNA abundance of antioxidant-related genes. In addition, knockdown of AMPK by short-hairpin RNA (shRNA) significantly reduced the protein levels of AMPK and Nrf2, increased the percentage of apoptotic cells, and abrogated Bai-mediated protection against oxidative stress. Collectively, our results indicated that Bai attenuated H2O2-induced cell injury and apoptosis in IPEC-J2 cells through improving the antioxidant capacity through the inhibition of the oxidative stress-mediated AMPK/Nrf2 signaling pathway.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Apoptosis , Línea Celular , Peróxido de Hidrógeno/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Porcinos , Animales
18.
Viruses ; 15(6)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37376538

RESUMEN

It is well established that PRRSV elimination is an effective strategy for PRRS control, but published reports concerning successful PRRSV elimination cases in farrow-to-finishing herds are rare. Here, we have reported a successful PRRSV elimination case in a farrow-to-finish herd by employing a "herd closure and rollover" approach with some modifications. Briefly, the introduction of pigs to the herd was stopped and normal production processes were maintained until the herd reached a PRRSV provisional negative status. During the herd closure, strict biosecurity protocols were implemented to prevent transmission between nursery pigs and sows. In the current case, introducing gilts before herd closure and live PRRSV exposure were skipped. In the 23rd week post-outbreak, the pre-weaning piglets started to show 100% PRRSV negativity in qPCR tests. In the 27th week, nursery and fattening barns fully launched depopulation. In the 28th week, nursery and fattening houses reopened and sentinel gilts were introduced into gestation barns. Sixty days post-sentinel gilt introduction, the sentinel pigs maintained being PRRSV antibody negative, manifesting that the herd matched the standard of the provisional negative status. The production performance of the herd took 5 months to bounce back to normal. Overall, the current study provided additional information for PRRSV elimination in farrow-to-finish pig herds.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Porcinos , Animales , Femenino , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Sus scrofa , Destete
19.
Poult Sci ; 102(7): 102730, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37167886

RESUMEN

The epidemic of goose astrovirus (GoAstV) caused huge losses to the poultry industry. Epidemiological studies in China revealed 2 circulating genotypes of GoAstV, but there is a lack of differential diagnosis tools. By analyzing all published genomes of GoAstV, this study designed specific PCR primers and Taqman probes to recognize different genotypes of GoAstV. After optimization and verification, this study developed a Taqman-based real-time quantitative PCR method that is capable of differential diagnosis. The established qPCR exhibited detection limitations of 100 copies/µL or 10 copies/µL, respectively, for GoAstV genotype 1 and genotype 2, and showed no false positive for other common avian viruses. This method was then used to analyze 72 samples collected from different regions in Jiangxi, and the results were verified by genome sequencing and phylogenetic analysis. These results revealed a complex coinfection of GoAstV different genotypes in China, highlighting the importance of long-term focus on the prevalence and genome evolution of GoAstV.


Asunto(s)
Avastrovirus , Gansos , Animales , Gansos/genética , Filogenia , Pollos/genética , Avastrovirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Genotipo , Sensibilidad y Especificidad
20.
Virus Genes ; 59(4): 554-561, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37184730

RESUMEN

In October 2020, an avian paramyxovirus serotype 14 (APMV-14)-designated chicken/Fujian/2160/2020 (FJ2160) was isolated from tracheal and cloacal swab sample of chicken collected from live bird market in Fujian province in China during the active surveillance program. The complete genome of FJ2160 comprised 15,444 nucleotides (nt) complying with the paramyxovirus "rule of six" and encoded six non-overlapping structural proteins in the order of 3'-NP-P-M-F-HN-L-'5. The complete genome sequence analysis showed that FJ2160 had the highest identity (90.0%) with the APMV-14 isolated from Japan, while the nucleotide sequence identities of FJ2160 and other APMVs ranged from 42.4 to 51.1%. The F protein cleavage site was TREGR↓L, which resembled a lentogenic strain of APMV-1. Phylogenetic analysis revealed that the FJ2160 closest relative was APMV-14. The intracerebral pathogenicity index (ICPI) tests indicated that the virus was lentogenic. This is the first report of APMV-14 in China. These results provide evidence that APMV-14 could infect chickens and reveal the genetic characteristics and biological properties of the virus, which can help to better understand this new emerging APMV-14.


Asunto(s)
Avulavirus , Pollos , Animales , Serogrupo , Genoma Viral/genética , Avulavirus/genética , Filogenia , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...