Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(6)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319733

RESUMEN

Epigenetics is a biological process that modifies and regulates gene expression, affects neuronal function, and contributes to pain. However, the mechanism by which epigenetics facilitates and maintains chronic pain is poorly understood. We aimed to determine whether N6-methyladenosine (m6A) specifically modified by methyltransferase-like 14 (METTL14) alters neuronal activity and governs pain by sensitizing the GluN2A subunit of the N-methyl-d-aspartate receptor (NMDAR) in the dorsal root ganglion (DRG) neurons in a model of chemotherapy-induced neuropathic pain (CINP). Using dot blotting, immunofluorescence, gain/loss-of-function, and behavioral assays, we found that m6A levels were upregulated in L4-L6 DRG neurons in CINP in a DBP/METTL14-dependent manner, which was also confirmed in human DRGs. Blocking METTL14 reduced m6A methylation and attenuated pain hypersensitivity. Mechanistically, METTL14-mediated m6A modification facilitated the synaptic plasticity of DRG neurons by enhancing the GluN2A subunit of NMDAR, and inhibiting METTL14 blocked this effect. In contrast, overexpression of METTL14 upregulated m6A modifications, enhanced presynaptic NMDAR activity in DRG neurons, and facilitated pain sensation. Our findings reveal a previously unrecognized mechanism of METTL14-mediated m6A modification in DRG neurons to maintain neuropathic pain. Targeting these molecules may provide a new strategy for pain treatment.


Asunto(s)
Adenina , Antineoplásicos , Neuralgia , Humanos , Adenina/análogos & derivados , Metiltransferasas/genética , Neuralgia/inducido químicamente , Neuralgia/genética , Receptores de N-Metil-D-Aspartato/genética , Proteínas de Unión al ARN
2.
Food Sci Biotechnol ; 33(2): 453-464, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38222903

RESUMEN

The aim of this study was to evaluate the effect of ultrahigh pressure processing (UHP) of 200, 300, 400, 500, 600 and 700 MPa for 20, 40 and 30 min on physicochemical and bioactive properties of the insoluble dietary fiber Pholiota nameko (PN-IDF). The results revealed that UHP were capable of decreasing the particle size of PN-IDF and binding phenolic content. Moreover, UHP technique had an improving effect on the bioaccessible phenolic content, the water-holding capacity, the oil-holding capacity and the nitrite ion adsorption capacity. Further, UHP technique presented a promoting effect on the antioxidant activity by scavenging ABTS or DPPH free radicals and increasing reducing power, and the anti-inflammatory activity by inhibiting carrageenan-induced paw edema on PN-IDF. Overall, this study well proved that UHP technology could improve the physicochemical and functional quality of PN-IDF, which could be used as a promising green technique for functional food ingredients processing.

3.
Nat Commun ; 15(1): 652, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253527

RESUMEN

Aberrant N-glycosylation has been implicated in viral diseases. Alpha-(1,6)-fucosyltransferase (FUT8) is the sole enzyme responsible for core fucosylation of N-glycans during glycoprotein biosynthesis. Here we find that multiple viral envelope proteins, including Hepatitis C Virus (HCV)-E2, Vesicular stomatitis virus (VSV)-G, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-Spike and human immunodeficiency virus (HIV)-gp120, enhance FUT8 expression and core fucosylation. HCV-E2 manipulates host transcription factor SNAIL to induce FUT8 expression through EGFR-AKT-SNAIL activation. The aberrant increased-FUT8 expression promotes TRIM40-mediated RIG-I K48-ubiquitination and suppresses the antiviral interferon (IFN)-I response through core fucosylated-EGFR-JAK1-STAT3-RIG-I signaling. FUT8 inhibitor 2FF, N-glycosylation site-specific mutation (Q352AT) of EGFR, and tissue-targeted Fut8 silencing significantly increase antiviral IFN-I responses and suppress RNA viral replication, suggesting that core fucosylation mediated by FUT8 is critical for antiviral innate immunity. These findings reveal an immune evasion mechanism in which virus-induced FUT8 suppresses endogenous RIG-I-mediated antiviral defenses by enhancing core fucosylated EGFR-mediated activation.


Asunto(s)
Hepatitis C , Interferón Tipo I , Humanos , Hepacivirus , Glicosilación , Proteína 58 DEAD Box , Fucosiltransferasas , Proteína gp120 de Envoltorio del VIH , Antivirales/farmacología , Receptores ErbB
4.
High Alt Med Biol ; 25(1): 77-88, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38241485

RESUMEN

Guo, Xinqi, Hongyu Ma, Ziye Cui, Qiyue Zhao, Ying Zhang, Lu Jia, Liping Zhang, Hui Guo, Xiangjian Zhang, Yi Zhang, Yue Guan, and Huijie Ma. Chronic intermittent hypobaric hypoxia reduces hypothalamic N-Methyl-d-Aspartate Receptor activity and sympathetic outflow in spontaneously hypertensive rats. High Alt Med Biol. 25:77-88, 2024. Objective: This study aims to determine the role of hypothalamic renin-angiotensin system (RAS) in the antihypertensive effect of chronic intermittent hypobaric hypoxia (CIHH). Methods: Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) received 35 days of hypobaric hypoxia simulating an altitude of 4,000 m, 5 h/day. The levels of RAS, blood pressure, and N-methyl-d-aspartate receptor (NMDAR) activities of hypothalamic paraventricular nucleus (PVN) presympathetic neurons from each group of rats were determined. Results: The systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure (MAP) of SHRs significantly decreased from the third week of CIHH treatment. This blood pressure reduction effect could be maintained for at least 2 weeks after stopping the CIHH treatment. CIHH treatment also attenuated the decrease in MAP and renal sympathetic nerve activity induced by hexamethonium administration in SHRs, but not in WKY rats. Furthermore, CIHH reversed the increase in serum angiotensin (Ang)II concentration and the expression of PVN angiotensin-converting enzyme (ACE) and AngII type 1 (AT1) receptors, as well as the decrease in serum Ang1-7 concentration and the expression of PVN ACE2 and Mas receptors in SHRs. In addition, the administration of CIHH resulted in a reduction in the frequency of miniature excitatory postsynaptic currents and amplitude of NMDAR current in PVN presympathetic neurons of SHRs, which means that CIHH decreased the pre- and postsynaptic NMDAR activity of PVN presympathetic neurons in SHRs. However, pretreatment with A779 (a Mas receptor blocker) or AngII abrogated the above effects. Meanwhile, Ang1-7 pretreatment mimicked the CIHH effect on pre- and postsynaptic NMDAR activity of presympathetic neurons in SHRs. Conclusions: Our data indicate that CIHH reduces pre- and postsynaptic NMDAR activity of PVN presympathetic neurons, sympathetic outflow, and blood pressure by decreasing the activity of the ACE/AngII/AT1 axis and increasing the activity of ACE2/Ang1-7/Mas axis in the hypothalamus in hypertension.


Asunto(s)
Hipertensión , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Ratas Endogámicas SHR , Receptores de N-Metil-D-Aspartato/metabolismo , Ratas Endogámicas WKY , Enzima Convertidora de Angiotensina 2/metabolismo , Hipotálamo , Hipertensión/etiología , Hipertensión/terapia , Presión Sanguínea/fisiología , Sistema Nervioso Simpático/metabolismo , Angiotensinas/metabolismo , Angiotensinas/farmacología
5.
Neurosci Lett ; 821: 137614, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38159880

RESUMEN

BACKGROUND: The vulnerability of hippocampal pyramidal (PY) neurons played a key role in the onset of cognitive impairment. Multiple researches revealed that neuroinflammation together with microglia activation and parvalbumin (PV) interneurons participated in the pathogenesis of cognitive dysfunction. However, the underlying mechanism was still unclear. This study aimed to determine whether microglia activation would induce PV interneurons impairment and PY neurons disinhibition, and as a result, promote cognitive dysfunction after lipopolysaccharide (LPS) challenge. METHODS: Male C57BL/6J mice were injected with LPS to establish systemic inflammation model, and animal behavioral tests were performed. For chemogenetics, the virus was injected bilaterally into the CA1 region. Clozapine N-Oxide (CNO) was used to activate the PV interneurons. Whole-cell patch clamp recording was applied to detect spontaneous inhibitory post synaptic current (sIPSC) and spontaneous excitatory post synaptic current (sEPSC) of PY neurons in the CA1 region. RESULTS: LPS induced hippocampal dependent memory impairment, which was accompanied with microglia activation. Meanwhile, PV protein level in hippocampus were decreased, and IPSCs of PY neurons in the CA1 were also suppressed. Minocycline reversed all the above changes. In addition, rescuing PV function with CNO improved memory impairment, sIPSCs of PY neurons and perisomatic PV boutons around PY neurons without affecting microglia activation. CONCLUSION: Disinhibition of hippocampal parvalbumin interneurons on pyramidal neurons participates in LPS-induced cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Hipocampo , Interneuronas , Parvalbúminas , Células Piramidales , Animales , Masculino , Ratones , Hipocampo/fisiopatología , Interneuronas/fisiología , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/metabolismo , Células Piramidales/fisiología , Disfunción Cognitiva/fisiopatología
6.
Conscious Cogn ; 116: 103585, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37944294

RESUMEN

The current study investigated the relationship between private speech usage and cognitive performance in young adults. Participants (n = 103, mean age = 20.21 years) were instructed to complete a visual-spatial working memory task while talking out loud to themselves as much as possible (Private Speech condition). We found that participants performed better on trials for which they produced a greater amount of private speech. To establish causality, we further found that participants performed better in the Private Speech condition than in a condition in which they were instructed to remain silent (Quiet condition). These beneficial effects of private speech were not moderated by task difficulty, which was manipulated by varying image labelability. However, participants who used more private speech during the task, as well as those who reported greater use of self-management private speech in everyday life, showed the greatest benefits. These findings have implications for real-world educational/instructional settings.


Asunto(s)
Percepción del Habla , Habla , Humanos , Adulto Joven , Adulto , Memoria a Corto Plazo , Memoria Espacial , Cognición
7.
Sheng Li Xue Bao ; 75(4): 487-496, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37583035

RESUMEN

It is well established that increased excitability of the presympathetic neurons in the hypothalamic paraventricular nucleus (PVN) during hypertension leads to heightened sympathetic outflow and hypertension. However, the mechanism underlying the overactivation of PVN presympathetic neurons remains unclear. This study aimed to investigate the role of endogenous corticotropin-releasing factor (CRF) on the excitability of presympathetic neurons in PVN using Western blot, arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) recording, CRISPR/Cas9 technique and patch-clamp technique. The results showed that CRF protein expression in PVN was significantly upregulated in spontaneously hypertensive rats (SHRs) compared with normotensive Wistar-Kyoto (WKY) rats. Besides, PVN administration of exogenous CRF significantly increased RSNA, heart rate and ABP in WKY rats. In contrast, knockdown of upregulated CRF in PVN of SHRs inhibited CRF expression, led to membrane potential hyperpolarization, and decreased the frequency of current-evoked firings of PVN presympathetic neurons, which were reversed by incubation of exogenous CRF. Perfusion of rat brain slices with artificial cerebrospinal fluid containing CRF receptor 1 (CRFR1) blocker, NBI-35965, or CRF receptor 2 (CRFR2) blocker, Antisauvagine-30, showed that blocking CRFR1, but not CRFR2, hyperpolarized the membrane potential and inhibited the current-evoked firing of PVN presympathetic neurons in SHRs. However, blocking CRFR1 or CRFR2 did not affect the membrane potential and current-evoked firing of presympathetic neurons in WKY rats. Overall, these findings indicate that increased endogenous CRF release from PVN CRF neurons enhances the excitability of presympathetic neurons via activation of CRFR1 in SHRs.


Asunto(s)
Hipertensión , Núcleo Hipotalámico Paraventricular , Ratas , Animales , Ratas Endogámicas SHR , Núcleo Hipotalámico Paraventricular/fisiología , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Ratas Endogámicas WKY , Hormona Liberadora de Corticotropina/farmacología , Hormona Liberadora de Corticotropina/metabolismo , Neuronas/fisiología , Sistema Nervioso Simpático
8.
Conscious Cogn ; 113: 103534, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37327510

RESUMEN

This study used a card-matching game that relies on visual-spatial working memory to investigate whether the amount one talks out loud to themselves (referred to as private speech) predicts cognitive performance in young adults (n = 118, mean age = 20.13 years). Each participant's performance was measured in two "Private Speech" trials, in which they were instructed to complete the game efficiently, while using private speech as much as they can. Using multilevel modeling, we found that participants performed significantly better on trials for which they produced more private speech. This relationship was not moderated by baseline competency on the task (measured in a condition where participants were not instructed to use, and rarely ever used, private speech). The study shows that the degree to which adults use private speech - when instructed to do so, is associated with cognitive performance, which may have important implications for educational/instructional settings.


Asunto(s)
Percepción del Habla , Humanos , Adulto Joven , Adulto , Habla , Cognición , Memoria a Corto Plazo , Memoria Espacial
9.
Neuropharmacology ; 230: 109506, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36924924

RESUMEN

Hyperactivity of presympathetic neurons in the hypothalamic paraventricular nucleus (PVN) plays a key role in generating excess sympathetic output in hypertension. However, the mechanisms driving hyperactivity of PVN presympathetic neurons in hypertension are unclear. In this study, we determined the role of corticotropin-releasing factor (CRF) in the PVN in augmented glutamatergic input, neuronal excitability and sympathetic outflow in hypertension. The number of CRF or c-Fos immunoreactive neurons and CRF/c-Fos double-labeled neurons in the PVN was significantly greater in spontaneously hypertensive rats (SHRs) than in normotensive Wistar-Kyoto (WKY) rats. Blocking glutamatergic input reduced the CRF-potentiated excitability of spinally projecting PVN neurons. Furthermore, CRF knockdown via Crispr/Cas9 in the PVN decreased the frequencies of spontaneous firing and miniature excitatory postsynaptic currents (mEPSCs) in spinally projecting PVN neurons in SHRs. In addition, the mRNA and protein levels of CRFR1, but not CRFR2, in the PVN were significantly higher in SHRs than in WKY rats. Blocking CRFR1 with NBI-35965, but not blocking CRFR2 with Antisauvagine-30, reduced the frequencies of spontaneous firing and mEPSCs of spinally projecting PVN neurons in SHRs. Also, microinjection of NBI-35965 into the PVN significantly reduced arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in anesthetized SHRs, but not in WKY rats. However, microinjection of Antisauvagine-30 into the PVN had no effect on ABP or RSNA in WKY rats and SHRs. Our findings suggest that endogenous CRF in the PVN potentiates glutamatergic input and firing activity of PVN presympathetic neurons via CRFR1, resulting in augmented sympathetic outflow in hypertension.


Asunto(s)
Hormona Liberadora de Corticotropina , Hipertensión , Ratas , Animales , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Hormona Liberadora de Corticotropina/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Hipertensión/metabolismo , Neuronas/metabolismo , Sistema Nervioso Simpático/metabolismo
10.
Small ; 19(22): e2205511, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871143

RESUMEN

Noble metal nanozymes hold promise in cancer therapy due to adjustable enzyme-like activities, unique physicochemical properties, etc. But catalytic activities of monometallic nanozyme are confined. In this study, 2D titanium carbide (Ti3 C2 Tx )-supported RhRu alloy nanoclusters (RhRu/Ti3 C2 Tx ) are prepared by a hydrothermal method and utilized for synergistic therapy of chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT) on osteosarcoma. The nanoclusters are small in size (3.6 nm), uniform in distribution, and have excellent catalase (CAT) and peroxidase (POD)-like activities. Density functional theory calculations show that there is a significant electron transfer interaction between RhRu and Ti3 C2 Tx , which has strong adsorption to H2 O2 and is beneficial to enhance the enzyme-like activity. Furthermore, RhRu/Ti3 C2 Tx nanozyme acts as both PTT agent for converting light into heat, and photosensitizer for catalyzing O2 to 1 O2 . With the NIR-reinforced POD- and CAT-like activity, excellent photothermal and photodynamic performance, the synergistic CDT/PDT/PTT effect of RhRu/Ti3 C2 Tx on osteosarcoma is verified by in vitro and in vivo experiments. This study is expected to provide a new research direction for the treatment of osteosarcoma and other tumors.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Aleaciones , Osteosarcoma/tratamiento farmacológico , Adsorción , Neoplasias Óseas/tratamiento farmacológico
11.
Comput Biol Med ; 145: 105534, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35585730

RESUMEN

Structural variation (SV) is a vital part of biological genetic diversity. The simulation and identification with high efficiency and accuracy are considered to be very important. With the continuous development and wide application of various technologies, computer simulation of genomic data has attracted wide attention due to its intuitive and convenient advantages. Meanwhile, there are several high-quality methods used for structural variation identification based on second-generation (short-read) and third-generation (long-read) data. These methods utilize various strategies and compatible aligners and exhibit specific characteristics. In addition, genomic visualization tools use graphical interfaces to visualize the data, which are convenient for data observation, validation, and even for the manual curation of several questionable data. The present study summarized the methods of simulation, identification, and visualization tools for structural variation in the context of sequencing technology development. Overall, this review aimed to offer a more comprehensive understanding of the impact of SV.


Asunto(s)
Variación Estructural del Genoma , Genómica , Simulación por Computador , Variación Genética , Genoma Humano , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Análisis de Secuencia de ADN/métodos
12.
Can J Physiol Pharmacol ; 99(11): 1191-1198, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34197721

RESUMEN

This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia following CIHH pretreatment group (CIHH+Ischemia, simulated a 5000 m altitude hypoxia, 6 h per day for 28 days, before induction of hind-limb ischemia), and sham group (Sham). The blood flow in the mouse models of hind-limb ischemia was examined using laser doppler imaging. The functional and morphological performance of ischemic muscle was evaluated using contraction force and hematoxylin-eosin and Masson's trichrome staining. Angiogenesis was determined by immunohistochemistry staining of the endothelial markers CD31 and CD34. The protein expressions of angiogenesis-related genes were detected using Western blot assay. Chronic ischemia resulted in reduced blood perfusion, decreased contraction tension, and morphological destruction in gastrocnemius muscle. CIHH pretreatment increased the contractile force and muscle fiber diameter and decreased necrosis and fibrosis of the ischemic muscle. Also, CIHH significantly increased the density of CD31+ and CD34+ cells and promoted the expression of angiogenesis-related molecules in ischemic muscle. These data demonstrate that CIHH has a protective effect against chronic limb ischemia by promoting angiogenesis.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Hipoxia/fisiopatología , Isquemia/fisiopatología , Isquemia/terapia , Neovascularización Fisiológica , Animales , Antígenos CD34 , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia , Masculino , Ratones Endogámicos C57BL , Contracción Muscular , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Neovascularización Fisiológica/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta
13.
Front Physiol ; 12: 639454, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841179

RESUMEN

BACKGROUND AND AIMS: Previous studies have demonstrated the anti-hypertensive effect of chronic intermittent hypobaric hypoxia (CIHH) in hypertensive rats. The present study investigated the anti-hypertensive effect of CIHH in spontaneously hypertensive rats (SHR) and the role of the renin-angiotensin system (RAS) in anti-hypertensive effect of CIHH. METHODS: Fifteen-week-old male SHR and WKY rats were divided into four groups: the SHR without CIHH treatment (SHR-CON), the SHR with CIHH treatment (SHR-CIHH), the WKY without CIHH treatment (WKY-CON), and the WKY with CIHH treatment (WKY-CIHH) groups. The SHR-CIHH and WKY-CIHH rats underwent 35-days of hypobaric hypoxia simulating an altitude of 4,000 m, 5 h per day. Arterial blood pressure and heart rate were recorded by biotelemetry, and angiotensin (Ang) II, Ang1-7, interleukin (IL)-6, tumor necrosis factor-alpha (TNF)-α, and IL-10 in serum and the mesenteric arteries were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. The microvessel tension recording technique was used to determine the contraction and relaxation of the mesenteric arteries. Hematoxylin and eosin and Masson's staining were used to observe vascular morphology and fibrosis. Western blot was employed to detect the expression of the angiotensin-converting enzyme (ACE), ACE2, AT1, and Mas proteins in the mesenteric artery. RESULTS: The biotelemetry result showed that CIHH decreased arterial blood pressure in SHR for 3-4 weeks (P < 0.01). The ELISA and immunohistochemistry results showed that CIHH decreased Ang II, but increased Ang1-7 in serum and the mesenteric arteries of SHR. In the CIHH-treated SHR, IL-6 and TNF-α decreased in serum and the mesenteric arteries, and IL-10 increased in serum (P < 0.05-0.01). The microvessel tension results revealed that CIHH inhibited vascular contraction with decreased Ang1-7 in the mesenteric arteries of SHR (P < 0.05-0.01). The staining results revealed that CIHH significantly improved vascular remodeling and fibrosis in SHR. The western blot results demonstrated that CIHH upregulated expression of the ACE2 and Mas proteins, and downregulated expression of the ACE and AT1 proteins (P < 0.05-0.01). CONCLUSION: CIHH decreased high blood pressure in SHR, possibly by inhibiting RAS activity, downregulating the ACE-Ang II-AT1 axis and upregulating the ACE2-(Ang1-7)-Mas axis, which resulted in antagonized vascular remodeling and fibrosis, reduced inflammation, and enhanced vascular relaxation.

14.
Life Sci ; 278: 119540, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33930369

RESUMEN

AIM: The aim of our study was to clarify the cardioprotection of chronic intermittent hypobaric hypoxia (CIHH) and the underlying mechanism in spontaneously hypertensive rats (SHR). MAIN METHODS: Adult male rats were divided into normal blood pressure Wistar-Kyoto rats (WKY) control (WKY-CON), WKY rats with CIHH treatment (WKY-CIHH), SHR control (SHR-CON) and SHR with CIHH treatment (SHR-CIHH) groups. SHR-CIHH and WKY-CIHH rats were subjected to hypobaric hypoxia simulating 4000-m altitude for 35 days, 5 h per day. Arterial blood pressure and cardiac function parameters, including ejection fraction, fractional shortening and left ventricular (LV) wall thickness, were evaluated. Cardiac pathomorphology and myocardial fibrosis were determined. The expression of angiotensin-converting enzyme (ACE), ACE2, Ang II, Ang1-7, AT1 receptor, Mas receptor, IL-6, TNF-α,IL-10, SOD and MDA were assayed in myocardium. KEY FINDINGS: CIHH significantly decreased arterial blood pressure, alleviated LV hypertrophy, and improved cardiovascular function in SHR (P < 0.05-0.01). Also, CIHH protected SHR heart against morphological changes and fibrosis. In addition, CIHH significantly down-regulated the ACE/Ang II/AT1 receptor axis and up-regulated the ACE2/Ang1-7/Mas axis of renin-angiotensin system (RAS) in SHR (P < 0.05-0.01). CIHH significantly reduced IL-6, TNF-α, and MDA levels, but increased IL-10 and SOD in SHR myocardium (P < 0.05-0.01). SIGNIFICANCE: The CIHH treatment protected the heart of SHR against LV remodelling and myocardial fibrosis, which might be carried out through a balance in the ACE/Ang II/AT1 axis and the ACE2/Ang1-7/Mas axis of the RAS to reduce inflammation, and inhibit oxidative stress.


Asunto(s)
Mal de Altura/epidemiología , Hipertensión/epidemiología , Hipertensión/patología , Miocardio/patología , Sistema Renina-Angiotensina , Remodelación Ventricular , Altitud , Animales , Fibrosis , Hipertensión/metabolismo , Masculino , Miocardio/metabolismo , Oxígeno/metabolismo , Factores Protectores , Ratas Endogámicas SHR , Ratas Endogámicas WKY
15.
Life Sci ; 231: 116533, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31173783

RESUMEN

AIM: The aim of this study was to investigate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against skeletal muscle ischemia-reperfusion (IR) injury and to determine the underlying mechanism. MAIN METHODS: C57BL/6 mice were randomly divided into 3 groups: skeletal muscle IR injury group (IR), CIHH pretreatment following IR group (IR + CIHH), and sham operation group (Sham). The skeletal muscle IR injury model was induced by the unilateral application of a tourniquet on a hind limb for 3 h and then releasing it for 24 h. CIHH pretreatment simulating a 5000-m altitude was applied 6 h per day for 28 days. The functional and morphological performance of IR-injured gastrocnemius muscle was evaluated using contraction force, H&E staining, and transmission electron microscopy. IR injury-induced CD68+ macrophage infiltration was assessed by immunofluorescence. TNFα levels in serum and muscle were measured by ELISA and western blotting, respectively. Apoptosis was examined by TUNEL staining and Cleaved Caspase-3 protein expression. KEY FINDINGS: Acute IR injury resulted in reduced contraction tension, morphological destruction, macrophage infiltration, increased TNFα levels, and apoptosis in gastrocnemius muscle. CIHH pretreatment significantly ameliorated contraction function and morphological performance in IR-injured skeletal muscle. In addition, CIHH pretreatment resulted in marked decreases in CD68+ macrophage infiltration, TNFα levels, and apoptosis. SIGNIFICANCE: These data demonstrated that CIHH has a protective effect against acute IR injury in skeletal muscle via inhibition of inflammation and apoptosis.


Asunto(s)
Hipoxia/patología , Músculo Esquelético/irrigación sanguínea , Daño por Reperfusión/prevención & control , Animales , Apoptosis/efectos de los fármacos , Hipoxia/metabolismo , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factor de Necrosis Tumoral alfa/metabolismo
16.
Cell Physiol Biochem ; 50(5): 1891-1902, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30396162

RESUMEN

BACKGROUND/AIMS: Myocardial ischemia/reperfusion (I/R) or hypoxia/reoxygenation (H/R) injury is always characterized by Ca2+ overload, energy metabolism disorder and necrocytosis of cardiomyocytes. We showed previously that chronic intermittent hypobaric hypoxia (CIHH) improves cardiac function during I/R through improving cardiac glucose metabolism. However, the underlying cellular and molecular mechanisms of CIHH treatment improving energy metabolism in cardiomyocytes are still unclear. In this study, we determined whether and how CIHH protects cardiomyocytes from Ca2+ overload and necrocytosis through energy regulating pathway. METHODS: Adult male Sprague-Dawley rats were randomly divided into two groups: control (CON) and CIHH group. CIHH rats received a hypobaric hypoxia simulating 5,000-m altitude for 28 days, 6 hours each day, in hypobaric chamber. Rat ventricular myocytes were obtained by enzymatic dissociation. The intracellular calcium concentration ([Ca2+]i) and cTnI protein expression were used to evaluate the degree of cardiomyocytes injury during and after H/R. The mRNA and protein expressions involved in cardiac energy metabolism were determined using quantitative PCR and Western blot techniques. PGC-1α siRNA adenovirus transfection was used to knock down PGC-1α gene expression of cardiomyocytes to determine the effect of PGC-1α in the energy regulating pathway. RESULTS: H/R increased [Ca2+]i and cTnI protein expression in cardiomyocytes. CIHH treatment decreased [Ca2+]i (p< 0.01) and cTnI protein expression (p< 0.01) in cardiomyocytes after H/R. Both mRNA and protein expression of PGC-1α increased after CIHH treatment, which was reversed by PGC-1α siRNA adenovirus transfection. Furthermore, CIHH treatment increased the expression of HIF-1α, AMPK and p-AMPK in cardiomyocytes, and pretreatment with AMPK inhibitor dorsomorphin abolished the enhancement of PGC-1α protein expression in cardiomyocytes by CIHH (p< 0.01). In addition, PGC-1α knock down also abolished the increased protein level of GLUT4 (p< 0.01) and decreased the protein level of CPT-1b (p< 0.05) in cardiomyocytes by CIHH treatment. CONCLUSION: CIHH treatment could reduce the calcium overload and H/R injury in cardiomyocytes by up-regulating the expression of PGC-1α and regulating the energy metabolism of glucose and lipid. The HIF-1α-AMPK signaling pathway might be involved in the process.


Asunto(s)
Miocitos Cardíacos/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Calcio/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Hipoxia de la Célula/genética , Células Cultivadas , Transportador de Glucosa de Tipo 4/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/antagonistas & inhibidores , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Pirazoles/farmacología , Pirimidinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Troponina I/metabolismo , Regulación hacia Arriba/efectos de los fármacos
17.
Psychiatry Res ; 270: 394-403, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30300870

RESUMEN

Mental disorders and sleep dysfunction are common among Chinese university students. This study aimed to evaluate a low cost scalable mindfulness intervention program to improve psychological health and sleep quality among Chinese university students. A randomized controlled trial with 101 university students (mean age 22.30 ±â€¯2.63, 69.31% female) was conducted. Participants were randomized into 4 groups: Group 1: control group (n = 25), Group 2: mindfulness only group (n = 27), Group 3: mindfulness + plain-text reminder group (n = 24), and Group 4: mindfulness + enhanced text reminder with animal meme group (n = 25).The mindfulness intervention consisted of two in-person guided sessions along with weekly self-guided practice for 7 weeks. The Depression, Anxiety and Stress Scale (DASS-21) and The Pittsburgh Sleep Quality Index (PSQI) were used to measure depression, anxiety, stress, and sleep dysfunction. After the intervention at week 4, compared to controls, completers in group 2, 3 and 4 (n = 42) showed significantly reduced depression (Cohen's d = 0.83), anxiety (Cohen's d = 0.84), and stress (Cohen's d = 0.75), and improved subjective sleep quality (Cohen's d = 2.00), sleep latency (Cohen's d = 0.55), and habitual sleep efficiency (Cohen's d = 0.86). The effect was maintained at week 7. Low-intensity mindfulness interventions might be a useful intervention program in university settings.


Asunto(s)
Pueblo Asiatico/psicología , Atención Plena/métodos , Estudiantes/psicología , Telemedicina/métodos , Universidades , Adulto , Ansiedad/epidemiología , Ansiedad/psicología , Ansiedad/terapia , Depresión/epidemiología , Depresión/psicología , Depresión/terapia , Femenino , Humanos , Masculino , Salud Mental/normas , Atención Plena/normas , Método Simple Ciego , Sueño/fisiología , Estrés Psicológico/epidemiología , Estrés Psicológico/psicología , Estrés Psicológico/terapia , Telemedicina/normas , Universidades/normas , Adulto Joven
18.
Int J Syst Evol Microbiol ; 64(Pt 12): 3958-3963, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25205797

RESUMEN

A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated M327(T), was isolated from the weathered surfaces of rock (mica schist) from Susong, Anhui Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain M327(T) belonged to the genus Paenibacillus and was related most closely to Paenibacillus terrigena A35(T) (98.6 % similarity) and Paenibacillus selenitireducens ES3-24(T) (98.3 %). Strain M327(T) contained meso-diaminopimelic acid in the cell wall and MK-7 as the major menaquinone. The main fatty acids of strain M327(T) were anteiso-C15 : 0 and iso-C16 : 0. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown aminophospholipids and an unknown lipid. The total DNA G+C content of strain M327(T) was 48.6 mol%. Based on the low level of DNA-DNA relatedness (ranging from 26.6 to 33.1 %) to these type strains of species of the genus Paenibacillus and unique phenotypic characteristics, it is suggested that strain M327(T) represents a novel species of the genus Paenibacillus, for which the name Paenibacillus susongensis sp. nov. is proposed. The type strain is M327(T) ( = CCTCC AB 2014058(T) = LMG 28236(T) = JCM 19951(T)).


Asunto(s)
Paenibacillus/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Paenibacillus/genética , Paenibacillus/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
19.
Int J Syst Evol Microbiol ; 63(Pt 9): 3154-3157, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23435246

RESUMEN

A Gram-stain-negative, aerobic, motile with one polar flagellum γ-proteobacterium, designated strain SBZ3-12(T), was isolated from surfaces of weathered potassic trachyte. Phylogenetic analysis of this strain based on 16S rRNA gene sequences showed that it was most closely related to Dyella japonica XD53(T) (97.9% 16S rRNA gene sequence similarity), Dyella terrae JS14-6(T) (97.7%), Dyella soli JS12-10(T) (97.5%) and Dyella koreensis BB4(T) (97.0%). The DNA G+C content of strain SBZ3-12(T) was 64.0 mol%. In addition, iso-C(17:1)ω9c, iso-C(15:0) and iso-C(16:0) were the major cellular fatty acids and ubiquinone Q-8 was the predominant respiratory quinone. The low DNA-DNA relatedness values between strain SBZ3-12(T) and recognized species of the genus Dyella and the many phenotypic properties supported the classification of strain SBZ3-12(T) as a representative of a novel species of the genus Dyella, for which the name Dyella jiangningensis sp. nov. is proposed. The type strain is SBZ3-12(T) ( =CCTCC AB 2012160(T) =KACC 16539(T) =DSM 26119(T)).


Asunto(s)
Filogenia , Potasio , Microbiología del Suelo , Xanthomonadaceae/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona , Xanthomonadaceae/genética , Xanthomonadaceae/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...