Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 8(37): 20712-20718, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35542329

RESUMEN

Fermentation of both glucose and xylose is essential to realize efficient bioconversion of renewable and abundant lignocellulosic biomass to hydrogen. In this study, a mixture of glucose and xylose at different ratios was used as a substrate for biological hydrogen production by an anaerobic sequential batch reactor (ASBR). An average glucose and xylose consumption of 80% and 50% with a high hydrogen production rate of 7.1 ± 0.9 mmol L-1 h-1 was obtained, respectively. Hydraulic retention time (HRT) played a critical role in hydrogen production at high glucose to xylose ratios. A maximum hydrogen production rate of 8.9 mmol L-1 h-1 was achieved at an optimized HRT of 12 h with a high glucose and xylose consumption of 92.2% and 82.2%, respectively. Upon further energy conversion analysis, continuous hydrogen production by ASBR provided the maximum energy conversion efficiency of 21.5%. These results indicate that ASBR can effectively accelerate the hydrogen production rate, improve substrate consumption regardless of the glucose to xylose ratio, and thus provides a new direction for efficient hydrogen production from lignocellulosic feedstock.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...