Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(14): e2306311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38298116

RESUMEN

The G-protein-coupled human cannabinoid receptor 1 (CB1) is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. The structures of CB1-Gi complexes in synthetic agonist-bound forms have been resolved to date. However, the commercial drug recognition and Gq coupling mechanisms of CB1 remain elusive. Herein, the cryo-electron microscopy (cryo-EM) structure of CB1-Gq complex, in fenofibrate-bound form, at near-atomic resolution, is reported. The structure elucidates the delicate mechanisms of the precise fenofibrate recognition and Gq protein coupling by CB1 and will facilitate future drug discovery and design.


Asunto(s)
Cannabinoides , Fenofibrato , Humanos , Receptor Cannabinoide CB1 , Microscopía por Crioelectrón , Proteínas de Unión al GTP
2.
Front Microbiol ; 14: 1164937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275176

RESUMEN

The booming mudflat aquaculture poses an accumulation of organic matter and a certain environmental threat. Protease-producing bacteria are key players in regulating the nitrogen content in ecosystems. However, knowledge of the diversity of protease-producing bacteria in coastal mudflats is limited. This study investigated the bacterial diversity in the coastal mudflat, especially protease-producing bacteria and their extracellular proteases, by using culture-independent methods and culture-dependent methods. The clam aquaculture area exhibited a higher concentration of carbon, nitrogen, and phosphorus when compared with the non-clam area, and a lower richness and diversity of bacterial community when compared with the clam naturally growing area. The major classes in the coastal mud samples were Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria. The Bacillus-like bacterial community was the dominant cultivated protease-producing group, accounting for 52.94% in the non-clam area, 30.77% in the clam naturally growing area, and 50% in the clam aquaculture area, respectively. Additionally, serine protease and metalloprotease were the principal extracellular protease of the isolated coastal bacteria. These findings shed light on the understanding of the microbes involved in organic nitrogen degradation in coastal mudflats and lays a foundation for the development of novel protease-producing bacterial agents for coastal mudflat purification.

3.
Methods Mol Biol ; 2676: 41-54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37277623

RESUMEN

Artificial photoenzymes with noncanonical photo-redox cofactors have paved the way for enzyme rational design and the creation of new-to-nature biocatalysts. Genetically encoded photo-redox cofactors endow photoenzymes with enhanced or novel activities that catalyze numerous transformations with high efficiency. Herein, we describe a protocol of repurposing photosensitizer proteins (PSP) through genetic code expansion to facilitate multiple photocatalytic conversions including photo-activated dehalogenation of aryl halides, CO2 to CO and CO2 to formic acid reduction. The methods for expression, purification, and characterization of the PSP are detailed. The installation of the catalytic modules and the utilization of PSP-based artificial photoenzymes for photoenzymatic CO2 reduction and dehalogenation are also described.


Asunto(s)
Dióxido de Carbono , Fármacos Fotosensibilizantes , Biocatálisis , Dióxido de Carbono/metabolismo , Oxidación-Reducción , Catálisis
4.
RNA ; 28(3): 390-399, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34916333

RESUMEN

Characterization of RNA-protein interaction is fundamental for understanding the metabolism and function of RNA. UV crosslinking has been widely used to map the targets of RNA-binding proteins, but is limited by low efficiency, requirement for zero-distance contact, and biases for single-stranded RNA structure and certain residues of RNA and protein. Here, we report the development of an RNA-protein crosslinker (AMT-NHS) composed of a psoralen derivative and an N-hydroxysuccinimide ester group, which react with RNA bases and primary amines of protein, respectively. We show that AMT-NHS can penetrate into living yeast cells and crosslink Cbf5 to H/ACA snoRNAs with high specificity. The crosslinker induced different crosslinking patterns than UV and targeted both single- and double-stranded regions of RNA. The crosslinker provides a new tool to capture diverse RNA-protein interactions in cells.


Asunto(s)
Reactivos de Enlaces Cruzados/síntesis química , ARN Nucleolar Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Ficusina/química , Unión Proteica , ARN Nucleolar Pequeño/química , Proteínas de Unión al ARN/química , Saccharomyces cerevisiae
6.
Chem Sci ; 12(26): 9114-9123, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34276941

RESUMEN

Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for investigating the dynamic properties of biomacromolecules. However, the success of protein smFRET relies on the precise and efficient labeling of two or more fluorophores on the protein of interest (POI), which has remained highly challenging, particularly for large membrane protein complexes. Here, we demonstrate the site-selective incorporation of a novel unnatural amino acid (2-amino-3-(4-hydroselenophenyl) propanoic acid, SeF) through genetic expansion followed by a Se-click reaction to conjugate the Bodipy593 fluorophore on calmodulin (CaM) and ß-arrestin-1 (ßarr1). Using this strategy, we monitored the subtle but functionally important conformational change of ßarr1 upon activation by the G-protein coupled receptor (GPCR) through smFRET for the first time. Our new method has broad applications for the site-specific labeling and smFRET measurement of membrane protein complexes, and the elucidation of their dynamic properties such as transducer protein selection.

7.
Cell Biochem Biophys ; 79(4): 905-917, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34028638

RESUMEN

In addition to nucleic acids, a variety of other biomolecules have also been found on the plasma membrane. Although researchers have realized that RNA has the ability to bind to membrane vesicles in vitro, little is known about whether and how RNA connects to the plasma membrane of the cell. The combination of high-throughput sequencing and in situ labeling methods provides an innovative approach for large-scale identification of subcellular RNAs. Here, we applied the recently published method APEX-seq and identified 75 RNAs related to the plasma membrane, in which lncRNA PMAR72 (plasma membrane-associated RNA AL121772.1) has a considerable affinity with sphingomyelin (SM) and localizes within distinct membrane foci. Our findings will provide some new evidence to elaborate the relationship between RNA and the plasma membrane of mammalian cells.


Asunto(s)
ARN Largo no Codificante
8.
Chembiochem ; 21(11): 1593-1596, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-31944493

RESUMEN

Human indoleamine 2,3-dioxygenase 1 (IDO1) has become an increasingly valuable target for cancer immunotherapy because it promotes immune escape by tumor cells. To date, the function of post-translational modifications (PTMs) on IDO1 has not been fully elucidated. Among the many forms of PTMs, it has been identified that three tyrosine sites (Y15, Y345, and Y353) on IDO1 are nitrated and play important roles in catalytic function. Herein, by genetically encoding 3-nitro-l-tyrosine into the tyrosine nitration sites of IDO1, the homogeneous and native nitrated IDO1 have been obtained. It is found that the nitration of different tyrosine sites has different effects on the IDO1 structure and enzyme activity. Nitration at position Y15 has a negligible effect, but nitration at Y345 or Y353 decreases the enzyme activity, especially Y353. Furthermore, these results demonstrate that the regulation of the catalytic function caused by tyrosine nitration is related to perturbation of the protein structure and heme-binding disruption.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Nitratos/química , Procesamiento Proteico-Postraduccional , Triptófano/química , Tirosina/análogos & derivados , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Cinética , Modelos Moleculares , Nitratos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Triptófano/metabolismo , Tirosina/química , Tirosina/metabolismo
9.
Biophys Rep ; 4(5): 273-285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30533492

RESUMEN

ABSTRACT: Fluorescent proteins (FPs) with emission wavelengths in the far-red and infrared regions of the spectrum provide powerful tools for deep-tissue and super-resolution imaging. The development of red-shifted FPs has evoked widespread interest and continuous engineering efforts. In this article, based on a computational design and genetic code expansion, we report a rational approach to significantly expand and red-shift the chromophore of green fluorescent protein (GFP). We applied computational calculations to predict the excitation and emission wavelengths of a FP chromophore harboring unnatural amino acids (UAA) and identify in silico an appropriate UAA, 2-amino-3-(6-hydroxynaphthalen-2-yl)propanoic acid (naphthol-Ala). Our methodology allowed us to formulate a GFP variant (cpsfGFP-66-Naphthol-Ala) with red-shifted absorbance and emission spectral maxima exceeding 60 and 130 nm, respectively, compared to those of GFP. The GFP chromophore is formed through autocatalytic post-translational modification to generate a planar 4-(p-hydroxybenzylidene)-5-imidazolinone chromophore. We solved the crystal structure of cpsfGFP-66-naphthol-Ala at 1.3 Å resolution and demonstrated the formation of a much larger conjugated π-system when the phenol group is replaced by naphthol. These results explain the significant red-shifting of the excitation and emission spectra of cpsfGFP-66-naphthol-Ala.

10.
Nat Chem Biol ; 14(9): 876-886, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30120361

RESUMEN

Signals from 800 G-protein-coupled receptors (GPCRs) to many SH3 domain-containing proteins (SH3-CPs) regulate important physiological functions. These GPCRs may share a common pathway by signaling to SH3-CPs via agonist-dependent arrestin recruitment rather than through direct interactions. In the present study, 19F-NMR and cellular studies revealed that downstream of GPCR activation engagement of the receptor-phospho-tail with arrestin allosterically regulates the specific conformational states and functional outcomes of remote ß-arrestin 1 proline regions (PRs). The observed NMR chemical shifts of arrestin PRs were consistent with the intrinsic efficacy and specificity of SH3 domain recruitment, which was controlled by defined propagation pathways. Moreover, in vitro reconstitution experiments and biophysical results showed that the receptor-arrestin complex promoted SRC kinase activity through an allosteric mechanism. Thus, allosteric regulation of the conformational states of ß-arrestin 1 PRs by GPCRs and the allosteric activation of downstream effectors by arrestin are two important mechanisms underlying GPCR-to-SH3-CP signaling.


Asunto(s)
Regulación Alostérica , Arrestina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Dominios Homologos src , Células Cultivadas , Células HEK293 , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...