Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 132879, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838899

RESUMEN

The base of Flammulina velutipes (F. velutipes) stipe are agricultural wastes generated during the cultivation of edible fungus F. velutipes with high amount of chitin. Herein, this study firstly prepared chitosan from the base of F. velutipes stipe (FVC) and its structure was identified. It was confirmed that FVC acted as an antigenic substance to activate the immune system in vivo and in vitro, drive T cells to differentiate into Th-17 cells, and establish an effective mucosal immune barrier in the oral cavity, thus inhibited C. albicans infection; On the other hand, FVC maintained the oral flora stability and significantly reduced the abundance of Streptococcus spp., which was closely related to C. albicans infection. On this basis, the inhibitory effects of FVC on oral pathogens Streptococcus mutans and Lactobacillus casei associated with C. albicans infection were further verified, and it was demonstrated that FVC effectively interfered with the growth of pathogenic bacteria by inducing the production of intracellular ROS to damage bacterial cells. Therefore, FVC may be potentially exploited as a novel approach to the prevention and treatment of oral C. albicans infection.

2.
Food Funct ; 14(23): 10314-10328, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37916395

RESUMEN

There is a need to explore combination therapy to improve the efficacy of immunotherapy for colorectal cancer through food probiotics. In this study, extracellular vesicles (EV) derived from Lactobacillus rhamnosus GG (LGG-EV) were successfully isolated. Adjusting the culture temperature to 30 °C led to an elevated LGG-EV yield, and the addition of penicillin resulted in a decrease in particle size. In addition, LGG-EV have better gastrointestinal tract stability in a Ca2+ environment in vivo and in vitro. Oral administration of LGG-EV synergistically improved anti-PD-1 immunotherapy efficacy against colorectal cancer. Mechanistically, LGG-EV modulated intestinal immunity by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Meanwhile, the diversity of the gut microbiota and the abundance of beneficial bacteria, such as Lactobacillus, increased in the combined-treatment mice. In addition, there were significant changes in the levels of serum metabolites associated with the microbiota and anti-tumor effects, including uridine, which was elevated by the combination of anti-PD-1 and LGG-EV treatment. Our findings provide theoretical and mechanistic insights into the development of LGG-EV as postbiotics in combination with immune checkpoint inhibitors for cancer therapy.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Lacticaseibacillus rhamnosus , Probióticos , Ratones , Animales , Linfocitos T CD8-positivos , Muerte Celular , Inmunoterapia , Neoplasias Colorrectales/tratamiento farmacológico
3.
Sensors (Basel) ; 23(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37514739

RESUMEN

Pest management has long been a critical aspect of crop protection. Insect behavior is of great research value as an important indicator for assessing insect characteristics. Currently, insect behavior research is increasingly based on the quantification of behavior. Traditional manual observation and analysis methods can no longer meet the requirements of data volume and observation time. In this paper, we propose a method based on region localization combined with an improved 3D convolutional neural network for six grooming behaviors of Bactrocera minax: head grooming, foreleg grooming, fore-mid leg grooming, mid-hind leg grooming, hind leg grooming, and wing grooming. The overall recognition accuracy reached 93.46%. We compared the results obtained from the detection model with manual observations; the average difference was about 12%. This shows that the model reached a level close to manual observation. Additionally, recognition time using this method is only one-third of that required for manual observation, making it suitable for real-time detection needs. Experimental data demonstrate that this method effectively eliminates the interference caused by the walking behavior of Bactrocera minax, enabling efficient and automated detection of grooming behavior. Consequently, it offers a convenient means of studying pest characteristics in the field of crop protection.


Asunto(s)
Tephritidae , Animales , Aseo Animal
4.
Adv Healthc Mater ; 12(28): e2301437, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37379009

RESUMEN

Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non-specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual-stimulation activated turn-on T1 imaging-based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)-mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3 O4 NPs) and a paramagnetic enhancer (Gd-DOTA complexes) are connected via the N6-methyladenine (m6 A)-caged, Zn2+ -dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd-DOTA complex-labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity-associated protein (FTO) specifically demethylates the m6 A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd-DOTA complex-labeled oligonucleotides. The restored T1 signal from the liberated Gd-DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia-mediated precise apoptotic cancer therapy.


Asunto(s)
ADN Catalítico , Compuestos Heterocíclicos , Nanopartículas , Neoplasias , Compuestos Organometálicos , ADN Catalítico/química , Fototerapia , Nanopartículas/química , Oligonucleótidos , Oligonucleótidos Antisentido , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/terapia
5.
Int J Biol Macromol ; 242(Pt 2): 124808, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211074

RESUMEN

Raffinose family oligosaccharides (RFOs) in food are the main factors causing flatulence in Irritable Bowel Syndrome (IBS) patients and the development of effective approaches for reducing food-derived RFOs is of paramount importance. In this study, polyvinyl alcohol (PVA)-chitosan (CS)-glycidyl methacrylate (GMA) immobilized α-galactosidase was prepared by the directional freezing-assisted salting-out technique, aimed to hydrolyze RFOs. SEM, FTIR, XPS, fluorescence and UV characterization results demonstrated that α-galactosidase was successfully cross-linked in the PVA-CS-GMA hydrogels, forming a distinct porous stable network through the covalent bond between the enzyme and the carrier. Mechanical performance and swelling capacity analysis illustrated that α-gal @ PVA-CS-GMA not only had suitable strength and toughness for longer durability, but also exhibited high water content and swelling capacity for better retention of catalytic activity. The enzymatic properties of α-gal @ PVA-CS-GMA showed an improved Km value, pH and temperature tolerance range, anti-enzymatic inhibitor (melibiose) activity compared to the free α-galactosidase and its reusability was at least 12 times with prolonged storage stability. Finally, it was successfully applied in the hydrolysis of RFOs in soybeans. These findings provide a new strategy for the development of α-galactosidase immobilization system to biological transform the RFOs components in the food for diet intervention of IBS.


Asunto(s)
Quitosano , Síndrome del Colon Irritable , Humanos , Rafinosa/química , Hidrólisis , alfa-Galactosidasa/química , Alcohol Polivinílico/química , Congelación , Oligosacáridos/química , Hidrogeles
6.
Anal Chem ; 95(14): 6098-6106, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36972326

RESUMEN

ß-Lactamase (Bla) produced by bacteria to resist ß-lactam antibiotics is a serious public health threat. Developing efficient diagnostic protocols for drug-resistant bacteria is of great significance. In this work, based on gas molecules in bacteria, a novel research strategy was proposed to develop a gas molecule-based probe by grafting 2-methyl-3-mercaptofuran (MF) onto cephalosporin intermediates via a nucleophilic substitution reaction. The probe can release the corresponding MF by reacting with Bla. The released MF, as a marker of drug-resistant bacteria, was analyzed by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The Bla concentration as low as 0.2 nM can be easily observed, providing an efficient method for detecting enzyme activity and screening drug-resistant strains in vivo. Importantly, the method is universal, and probes with different properties can be prepared by changing different substrates to further identify different types of bacteria, thereby broadening the research methods and ideas for monitoring physiological processes.


Asunto(s)
Antibacterianos , beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/análisis , beta-Lactamasas/análisis , Espectrometría de Masas en Tándem , Bacterias , Monobactamas/análisis , Cromatografía de Gases y Espectrometría de Masas
7.
ACS Appl Mater Interfaces ; 15(9): 12453-12461, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36826831

RESUMEN

Electro-enhanced solid-phase microextraction (EE-SPME) is a bright separation and enrichment technique that integrates solid-phase microextraction with the electric field. It retains the excellent extraction performance of SPME technology while having the advantages of efficient driving of electric field and special interaction between the electric field and electrons in the molecules of material structure. Replacing conventional SPME fibers with highly efficient and highly conductive original EE-SPME fibers is critical for the practical applications of these technologies. Here, a novel fiber preparation strategy was proposed to obtain a highly conductive porphyrin-based covalent organic framework (POR-COF) by one-step electropolymerization. Benefiting from the excellent semiconducting properties of porphyrin groups, the POR-COF can be spontaneously polymerized on the fiber surface under an appropriate voltage within a few hours. Its performance was evaluated by the EE-SPME of phthalate esters (PAEs) from food and environmental samples, followed by gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS/MS) technology. The results showed that the POR-COF fiber has been successfully used for the detection of trace PAEs in beverages, industrial wastewater, lake water, and oyster samples with high adsorption selectivity and satisfactory sensitivity. The remarkable extraction properties are mainly attributed to the synergistic effect from material characteristics and electrical parameters' control in the extraction process. The presented strategy for the controlled design and synthesis of highly conductive porphyrin-based covalent organic framework fibers offers prospects in developing EE-SPME technologies.

8.
Gels ; 8(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35621623

RESUMEN

To explore the effect and mechanism of bivalent ion doping on yttrium iron garnet (YIG), Zn-YIG (Zn-doped YIG) nanoparticles with a size of 60~70 nm were prepared by the sol-gel method. It was proven that Zn ion doping resulted in lattice expansion and internal stress due to crystallite size shrinkage. A Raman spectroscopic analysis proved the influence of Zn doping on the crystal structure and peak intensity by analyzing Raman vibration modes. The characteristics and chemical mechanism of mass loss and phase evolution in each temperature region were explored through TG-DSC measurements. Moreover, it was revealed that the antiferromagnetic coupling, pinning mechanisms and particle aggregation lead to coercivity, exhibiting different variation trends. A saturation magnetization (Ms) curve variation mechanism was further revealed, which was due to the thermal effects, super-exchange effect, and coupling effect between sub-lattices. Meanwhile, the influence of the thermal effect on Ms and its mechanism were explored by spin theory, and it was proven that it was mainly caused by the random arrangement of magnetic moments and thermal vibration. These results provide theoretical support for the wider application of YIG devices in microwave and high-temperature fields.

9.
Talanta ; 236: 122866, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34635248

RESUMEN

Small molecular contaminants (such as mycotoxins, antibiotics, pesticide residues, etc.) in food and environment have given rise to many biological and ecological toxicities, which has attracted worldwide attention in recent years. Meanwhile, due to the advantages of aptamers such as high specificity and stability, easy synthesis and modification, as well as low cost and immunogenicity, various aptasensors for the detection of small molecular contaminants have been flourishing. An aptasensor as a whole is composed of an aptamer-based target recognizer and a signal transducer, which are fields of concentrated research. In the practical detection applications, in order to achieve the quantitative detection of small molecular contaminants at low abundance in real samples, a large number of signal enhancing strategies have been utilized in the development of aptasensors. Recent years is a vintage period for efficient signal enhancing strategies of aptasensors by the aid of nanomaterials and nucleic acid amplification that are applied in the elements for target recognition and signal conversion. Therefore, this paper meticulously reviews the signal enhancing strategies based on nanomaterials (including the (quasi-)zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanomaterials) and nucleic acid amplification (including enzyme-assisted nucleic acid amplification and enzyme-free nucleic acid amplification). Furthermore, the challenges and future trends of the abovementioned signal enhancing strategies for application are also discussed in order to inspire the practitioners in the research and development of aptasensors for small molecular contaminants.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanoestructuras , Ácidos Nucleicos , Técnicas de Amplificación de Ácido Nucleico
10.
Nanomaterials (Basel) ; 11(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34578616

RESUMEN

We theoretically study the multiple sharp Fano resonances produced by the near-field coupling between the multipolar narrow plasmonic whispering-gallery modes (WGMs) and the broad-sphere plasmon modes supported by a deep-subwavelength spherical hyperbolic metamaterial (HMM) cavity, which is constructed by five alternating silver/dielectric layers wrapping a dielectric nanosphere core. We find that the linewidths of WGMs-induced Fano resonances are as narrow as 7.4-21.7 nm due to the highly localized feature of the electric fields. The near-field coupling strength determined by the resonant energy difference between WGMs and corresponding sphere plasmon modes can lead to the formation of the symmetric-, asymmetric-, and typical Fano lineshapes in the far-field extinction efficiency spectrum. The deep-subwavelength feature of the proposed HMM cavity is verified by the large ratio (~5.5) of the longest resonant wavelength of WGM1,1 (1202.1 nm) to the cavity size (diameter: 220 nm). In addition, the resonant wavelengths of multiple Fano resonances can be easily tuned by adjusting the structural/material parameters (the dielectric core radius, the thickness and refractive index of the dielectric layers) of the HMM cavity. The narrow linewidth, multiple, and tunability of the observed Fano resonances, together with the deep-subwavelength feature of the proposed HMM cavity may create potential applications in nanosensors and nanolasers.

11.
Anal Chim Acta ; 1181: 338886, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34556223

RESUMEN

A facile and rapid strategy for preparation of covalent organic framework (COF) coated fibers at ambient temperature is urgently needed for solid-phase microextraction (SPME) technology. In this work, an in situ room-temperature rapid growth strategy was developed to high-efficiently fabricate imine-linked COF (TPB-DVA) coated fibers in as little as 30 min at room temperature, and the thickness of the coating reached 9 µm. The prepared TPB-DVA coated fiber offer high thermal and chemical stability, and outstanding service lifetime. Moreover, we generalize this strategy to other two imine-linked COF (TPB-DMTP and TFPB-TAPB) coated fibers and the fibers were fabricated at room temperature for 3 h and 12 h, respectively, which demonstrate the applicability of this strategy. Subsequently, a SPME-GC-MS/MS analytical method was developed for trace pyrethroids (PYs) detection, which exhibited high enhancement factors (EFs, 2700-13195), wide linear range (0.08-800 ng L-1), low limits of detection (LODs, 0.02-0.20 ng L-1), and good repeatability (RSD ≤ 8.5%, n = 6). Furthermore, the developed analytical method was applied to tea samples and trace PYs (1.31-4.32 ng L-1) were found with satisfactory recovery (80.2-119.8%). The above results demonstrated that the feasibility of the developed strategy for the facile and rapid fabrication of imine-linked COF coated fibers.


Asunto(s)
Estructuras Metalorgánicas , Piretrinas , Contaminantes Químicos del Agua , Iminas , Límite de Detección , Microextracción en Fase Sólida , Espectrometría de Masas en Tándem , Temperatura , Contaminantes Químicos del Agua/análisis
12.
ACS Appl Mater Interfaces ; 13(32): 38029-38039, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34357763

RESUMEN

Biofilms formed on urinary catheters remain a major headache in the modern healthcare system. Among the various kinds of biocide-releasing urinary catheters that have been developed to prevent biofilm formation, Ag nanoparticles (AgNPs)-coated catheters are of great promising potential. However, the deposition of AgNPs on the surface of catheters suffers from several inherent shortcomings, such as damage to the urethral mucosa, uncontrollable Ag ion kinetics, and unexpected systematic toxicity. Here, AgNPs-decorated amphiphilic carbonaceous particles (ACPs@AgNPs) with commendable dispersity in solvents of different polarities and broad-spectrum antibacterial activity are first prepared. The resulting ACPs@AgNPs exert good compatibility with silicone rubber, which enables the easy fabrication of urinary catheters using a laboratory-made mold. Therefore, ACPs@AgNPs not only endow the urinary catheter with forceful biocidal activity but also improve its mechanical properties and surface wettability. Hence, the designed urinary catheter possesses excellent capacity to resist bacterial adhesion and biofilm formation both in vitro and in an in vivo rabbit model. Specifically, a long-term antibacterial study highlights its sustainable antibacterial activity. Of note, no obvious toxicity or inflammation in rabbits was triggered by the designed urinary catheter in vivo. Overall, the hybrid urinary catheter may serve as a promising biocide-releasing urinary catheter for antibacterial and antibiofilm applications.


Asunto(s)
Infecciones Bacterianas/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Nanopartículas del Metal , Plata/farmacología , Catéteres Urinarios/microbiología , Infecciones Urinarias/tratamiento farmacológico , Animales , Antibacterianos/farmacología , Masculino , Nanopartículas del Metal/microbiología , Nanopartículas del Metal/uso terapéutico , Conejos
13.
Talanta ; 233: 122542, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34215045

RESUMEN

The tailor-prepare solid phase microextraction (SPME) coatings with stable and excellent properties to effectively extract analytes from sample matrix still remains a challenge. Herein, a nitrogen doped graphitic carbon networks (NG-CNTW) coated fiber was fabricated by direct carbonization of nanosized ZIF-67 crystals (nano-ZIF-67) that grown on stainless steel wire. The NG-CNTW coated fiber coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) was applied for enrichment and determination of pyrethroids. The NG-CNTW coating exhibited high surface area and hierarchical porous structures that facilitate diffusion and accessibility of target molecules. Simultaneously, the nitrogen doped and highly graphitic structures endow the coating with high adsorption affinity for aromatic compounds. Under optimum conditions, the SPME-GC-MS/MS method presented wide range of linearity performance (0.08-200.0 ng g-1), low limits of detection (0.02-0.5 ng g-1) and good repeatability (RSD < 9.6%) for 8 kinds of pyrethroids. Furthermore, the proposed method was successfully applied in the determination of pyrethroids in grape and cauliflower samples, as the results were in the range of 3.16-15.06 ng g-1and 2.08-9.29 ng g-1, respectively. This work not only provides a new method by fabricating carbon nanomaterial coatings in situ derived from MOFs, but also shows great potential of MOFs derivative materials in environmental analysis field.


Asunto(s)
Grafito , Plaguicidas , Piretrinas , Contaminantes Químicos del Agua , Carbono , Cromatografía de Gases y Espectrometría de Masas , Nitrógeno , Plaguicidas/análisis , Microextracción en Fase Sólida , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
14.
J Chromatogr A ; 1646: 462031, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857834

RESUMEN

In this study, an oxygenated carbon nanotubes cages (OCNTCs) material was prepared by calcinating zeolitic imidazole framework-67 (ZIF-67) and then oxidizing the resulting material. The OCNTCs was used as a high efficient solid-phase microextraction (SPME) coating to extract aromatic amines (AAs). The obtained fiber exhibited high selectivity for AAs over other organic compounds in food contact materials (FCMs) due to matched pore size and abundant oxygen-containing groups. Subsequently, coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method with low limits of detection (0.1-2.0 ng L-1), wide linear ranges (0.5-500 ng L -1) and good precision (RSDs ≤ 8.6%) was developed for analysis of AAs. The specific migrated AAs from food simulants that prepared by standardized migration and thermal migration test were successfully analysed by this developed method with satisfactory recoveries (81.6% - 118.1%) and precision (RSDs, 2.1-9.5%). The results demonstrated that the prepared OCNTCs-coated fibers displayed excellent extraction performance, suggesting a promising application to investigate the migration behaviors of AAs.


Asunto(s)
Aminas/aislamiento & purificación , Contaminación de Alimentos/análisis , Nanotubos de Carbono/química , Oxígeno/química , Microextracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Espectrometría de Masas en Tándem
15.
Talanta ; 209: 120541, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31891995

RESUMEN

Although an efficient and stable fiber coating is essential for the development of the solid-phase microextraction (SPME) technique, it remains a challenging prospect. We report herein the construction of graphitic carbon nitride derivative (g-C3N4-d) nanosheets having a large surface area, large mesopores (3.15 and 36.6 nm), and abundant adsorption sites, and the application of coating g-C3N4-d on an SPME fiber. The coated SPME fiber combined with gas chromatography-mass spectrometry (GC-MS) was used for the determination of polycyclic aromatic hydrocarbons (PAHs). The coating contained large mesopores that accommodated large target molecules and promoted molecular diffusion inside the coating sorbent. The coating demonstrated significant extraction capability toward PAHs because of multiple interactions, including hydrophobic and strong π-π interactions. Under optimal conditions, the limits of detection for PAHs were achieved within the range of 0.01-0.10 ng L-1. The method developed to detect eight PAHs in six river water samples from different cities, and the recoveries were ranging from 83.3 to 103.0%. The g-C3N4-d nanosheet-coated fiber was sufficiently stable to be recycled more than 200 times without obvious loss of extraction capacity. This study describes the development of a novel SPME adsorbent having excellent analytical properties.

16.
Anal Chim Acta ; 1095: 99-108, 2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31864635

RESUMEN

An efficient and stable adsorbent is of critical importance for solid-phase microextraction (SPME). In this study, we prepared metal-organic framework-derived nitrogen (N)-doped carbon (C) nanotube cages (N-CNTCs) with unique N-doped active sites and C-rich nanotubes to coat SPME adsorbents. This new material was obtained via a simple thermal treatment with ZIF-67, and exhibited high porosity and excellent chemical and thermal stability. Compared with commercial fibers and traditional C nanotubes-coated fiber (15 nm), N-CNTC-coated fiber exhibited better extraction properties, mainly due to its π-π interactions, abundant active sites, and hollow cage structure, which is composed of interconnected crystalline N-doped C nanotubes. N-CNTC-coated fiber exhibited better extraction performance and shorter extraction equilibrium time than the solid N-doped C-coated fiber due to its hollow cage structure. The N-CNTC-coated fiber was then used to identify polychlorinated biphenyls (PCBs) with wide linear range (0.3-1000.0 ng L-1), low limits of detection (0.10-0.22 ng L-1), good repeatability (intra-day, 2.6-3.8%; inter-day, 3.3-4.8%), and good reproducibility (<8.6%). We then successfully applied the N-CNTC-coated fiber to detect PCBs in river water samples from six cities in Fujian Province and obtained satisfactory recovery levels. Thus, the novel N-CNTCs coating proposed in this study is a promising candidate for SPME coating.

17.
Anal Chim Acta ; 1084: 43-52, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31519233

RESUMEN

In this work, oxygenated carbon nitride nanosheets (OCNNSs) were first introduced to the field of analytic chemistry for solid-phase microextraction (SPME). The rich hydroxyl and carboxyl contents of OCNNSs provided abundant adsorption sites. The coated stainless steel fibers, synthesized by the layer-by-layer chemical bonding method, had good chemical stability (in organic solvents), long life (durability ≥ 150 cycles), and good reproducibility (RSDs ≤ 9.2%). This novel OCNNSs-coated fiber was used for SPME with gas chromatography-mass spectrometry (GC-MS) for the analysis of phthalic acid esters (PAEs) in three types of food products (seafood, samshu, and instant noodles). Under optimal conditions, the limits of detection (LODs) for the PAEs ranged from 0.1 to 10.0 pg mL-1, and recovery was in the range of 80.0-118.1%. These novel coated SPME fibers displayed excellent separation and enrichment properties, which suggest a pretreatment application for analysis of PAEs.

18.
RSC Adv ; 8(14): 7883-7891, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35539135

RESUMEN

Nanosized mesoporous γ-alumina (M-γ-Al2O3) was first prepared and then modified into a carbon paste to fabricate a novel modified carbon paste electrode. The prepared alumina has pores with an amorphous wall and large surface area. The electrochemical behavior of the modified carbon paste electrode was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods. The modified carbon paste electrode was employed to determine Pb2+ and Cd2+ simultaneously by a differential pulse voltammetry (DPV) method. Amperometric determination was carried out in 0.1 mol L-1 NaAc-HAc buffer solution (pH 6.0) after enriching for 360 s at -1.0 V. The oxidation peak currents of Pb2+ and Cd2+ were proportional to their concentration in the range of 0.001-10 µmol L-1 and 0.01-10 µmol L-1, respectively. The detection limits of Pb2+ and Cd2+ were 0.20 nmol L-1 and 2.0 nmol L-1 (S/N = 3), respectively. The modified carbon paste electrode shows good stability, repeatability and sensitivity. The proposed method was applied to the determination of Pb2+ and Cd2+ in water samples with satisfactory results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...