Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(50): 21438-21447, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38051181

RESUMEN

Deep-sea mining magnifies the release of heavy metals into seawater through oxidative dissolution of seafloor massive sulfide (SMS). At present, there is little information about how the metals released into seawater might be affected by the mineral assemblages, seawater conditions, and solid percentages. Here, leaching experiments were carried out to examine the behavior of three sulfides from the Southwest Indian Ridge, under conditions that replicated deep and shallow seawater environments at three solid-liquid ratios. The results demonstrated that sphalerite dissolved rapidly, and the metals released in both experimental conditions were comparable, potentially reflecting galvanic interactions between the sulfide minerals. Large quantities of the released metals were removed from the solutions when hydrous ferric oxides formed, especially for shallow seawater conditions. A comparison of metal concentrations in the leachates with the baseline metal concentrations in natural seawater indicated that most of the released metals, when diluted with seawater, would not have widespread impacts on ecosystems. Based on the obtained unique oxidative dissolution properties of each SMS at variable solid-liquid ratios, targeted wastewater discharge treatments are proposed to minimize impacts from the dissolved metals. This study will support the development of robust guidelines for deep-sea mining activities.


Asunto(s)
Ecosistema , Metales Pesados , Agua de Mar , Sulfuros , Minerales , Estrés Oxidativo
2.
Nat Commun ; 11(1): 1300, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32157084

RESUMEN

Coupled magmatic and tectonic activity plays an important role in high-temperature hydrothermal circulation at mid-ocean ridges. The circulation patterns for such systems have been elucidated by microearthquakes and geochemical data over a broad spectrum of spreading rates, but such data have not been generally available for ultra-slow spreading ridges. Here we report new geophysical and fluid geochemical data for high-temperature active hydrothermal venting at Dragon Horn area (49.7°E) on the Southwest Indian Ridge. Twin detachment faults penetrating to the depth of 13 ± 2 km below the seafloor were identified based on the microearthquakes. The geochemical composition of the hydrothermal fluids suggests a long reaction path involving both mafic and ultramafic lithologies. Combined with numerical simulations, our results demonstrate that these hydrothermal fluids could circulate ~ 6 km deeper than the Moho boundary and to much greater depths than those at Trans-Atlantic Geotraverse and Logachev-1 hydrothermal fields on the Mid-Atlantic Ridge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA