Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Thorac Dis ; 16(4): 2404-2420, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738254

RESUMEN

Background: Reinfection of coronavirus disease 2019 (COVID-19) has raised concerns about how reliable immunity from infection and vaccination is. With mass testing for the virus halted, understanding the current prevalence of COVID-19 is crucial. This study investigated 1,191 public health workers at the Xiamen Center for Disease Control, focusing on changes in antibody titers and their relationship with individual characteristics. Methods: The study began by describing the epidemiological characteristics of the study participants. Multilinear regression (MLR) models were employed to explore the associations between individual attributes and antibody titers. Additionally, group-based trajectory models (GBTMs) were utilized to identify trajectories in antibody titer changes. To predict and simulate future epidemic trends and examine the correlation of antibody decay with epidemics, a high-dimensional transmission dynamics model was constructed. Results: Analysis of epidemiological characteristics revealed significant differences in vaccination status between infected and non-infected groups (χ2=376.706, P<0.05). However, the distribution of antibody titers among the infected and vaccinated populations was not significantly different. The MLR model identified age as a common factor affecting titers of immunoglobulin G (IgG), immunoglobulin M (IgM), and neutralizing antibody (NAb), while other factors showed varying impacts. History of pulmonary disease and hospitalization influenced IgG titer, and factors such as gender, smoking, family history of pulmonary diseases, and hospitalization impacted NAb titers. Age was the sole determinant of IgM titers in this study. GBTM analysis indicated a "gradual decline type" trajectory for IgG (95.65%), while IgM and NAb titers remained stable over the study period. The high-dimensional transmission dynamics model predicted and simulated peak epidemic periods in Xiamen City, which correlated with IgG decay. Age-group-specific simulations revealed a higher incidence and infection rate among individuals aged 30-39 years during both the second and third peaks, followed by those aged 40-49, 50-59, 18-29, and 70-79 years. Conclusions: Our study shows that antibody titer could be influenced by age, previous pulmonary diseases as well as smoking. Furthermore, the decline in IgG titers is consistent with epidemic trends. These findings emphasize the need for further exploration of these factors and the development of optimized self-protection countermeasures against reinfection.

2.
Dig Liver Dis ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38582712

RESUMEN

BACKGROUND & AIMS: Whether maintaining optimal remnant cholesterol (RC) levels later in life may improve metabolic dysfunction-associated steatotic liver disease (MASLD) outcomes remained ambiguous. This study aimed to investigate the relationship between RC and MASLD in the elderly Chinese population. METHODS: A total of 131,868 subjects aged ≥ 65 years were included in this study. The association of RC with MASLD, and severity of MASLD was analyzed by logistic regression. In addition, stratified analysis was conducted to test the potential interaction. RESULTS: MASLD prevalence and RC concentration decreased with age. After adjustment for possible confounders, the odds ratio of MASLD at the highest quartile of RC compared to the lowest quartile was 1.587(95% CI: 1.524-1.652), and this effect remained in MASLD with liver fibrosis. Stratified analysis showed a more prominent effect on the MASLD in males, those aged 65-69 years, those without central obesity, those with diabetes, and normal level of total cholesterol, low-density lipoprotein cholesterol (Pfor interaction<0.05). CONCLUSIONS: In the elderly subset of the Chinese population, higher RC levels achieved a significant risk effect against MASLD. More RC monitoring should be given to older for the prevention and intervention of MASLD.

3.
Exp Cell Res ; 437(2): 114014, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547959

RESUMEN

Extracellular matrix (ECM) stiffness regulates development and homeostasis in vivo and affects both physiological and pathological processes. A variety of studies have demonstrated that mRNAs, such as Piezo1, integrin ß1, and Yes-associated protein (YAP)/tafazzin (TAZ), can sense the mechanical signals induced by ECM stiffness and transmit them from the extracellular space into the cytoplasm. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been reported to play important roles in various cellular processes. Therefore, the interactions between ncRNAs and ECM stiffness, as well as the underlying molecular mechanisms, have become intriguing. In this review, we summarize recent findings on miRNAs and lncRNAs that interact with ECM stiffness. Several miRNAs and lncRNAs are involved in the progression of liver cancer, breast cancer, osteosarcoma, and cardiovascular diseases under the regulation of ECM stiffness. Through these ncRNAs, cellular behaviors including cell differentiation, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) are affected by ECM stiffness. We also integrate the ncRNA signaling pathways associated with ECM stiffness, in which typical signaling pathways like integrin ß1/TGFß1, phosphatidylinositol-3 kinase (PI3K)/AKT, and EMT are involved. Although our understanding of the relationships between ncRNAs and ECM stiffness is still limited, further investigations may provide new insights for disease treatment. ECM-associated ncRNAs may serve as disease biomarkers or be targeted by drugs.


Asunto(s)
MicroARNs , ARN Largo no Codificante , MicroARNs/genética , ARN Largo no Codificante/genética , Integrina beta1/metabolismo , Matriz Extracelular/metabolismo , Diferenciación Celular
4.
Nanomaterials (Basel) ; 14(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38202573

RESUMEN

Sodium-ion batteries (SIBs) as a replaceable energy storage technology have attracted extensive attention in recent years. The design and preparation of advanced anode materials with high capacity and excellent cycling performance for SIBs still face enormous challenges. Herein, a solution method is developed for in situ synthesis of anti-aggregation tellurium nanorods/reduced graphene oxide (Te NR/rGO) composite. The material working as the sodium-ion battery (SIB) anode achieves a high reversible capacity of 338 mAh g-1 at 5 A g-1 and exhibits up to 93.4% capacity retention after 500 cycles. This work demonstrates an effective preparation method of nano-Te-based composites for SIBs.

5.
EClinicalMedicine ; 67: 102374, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38169940

RESUMEN

Background: The pivotal phase 3 efficacy clinical trial has demonstrated that a two-dose regimen of dNS1-RBD (Beijing Wantai Biological Pharmacy Enterprise, Beijing, China) is well-tolerated and provides wide protection against SARS-CoV-2 infection. However, the effectiveness of a single-dose regimen is still unknown. We aimed to estimate the effectiveness of one-dose of dNS1-RBD against symptomatic Omicron infections in real-world conditions. Methods: This prospective cohort study was conducted during an Omicron outbreak among healthcare workers in Xiamen, China, from December 22, 2022 to January 16, 2023. Participants chose to receive single-dose of dNS1-RBD or remain unvaccinated based on personal preference. Healthcare workers daily validated their SARS-CoV-2 infection status, using either RT-PCR or rapid antigen test. A survey questionnaire was conducted to gather information on acute symptoms from individuals infected with SARS-CoV-2. The primary outcome was the symptomatic SARS-CoV-2 infections after enrollment in the dNS1-RBD recipients or the control group among all participants and by prior COVID-19 vaccination status. Findings: On December 22, 2022, a total of 1391 eligible participants without a history of prior SARS-CoV-2 infection were enrolled. Among them, 550 received single-dose of dNS1-RBD, while 841 remained unvaccinated. In the total cohort, the range of follow-up time was 1∼26 days. During the study period, a total of 880 symptomatic SARS-CoV-2 infections were identified in the total cohort. The adjusted vaccine effectiveness against symptomatic SARS-CoV-2 infections and the infections requiring medical attention were 19.0% (95% CI: 6.7, 29.7, P = 0.004) and 59.4% (95% CI: 25.1, 78.0, P = 0.004) in the total cohort, 11.6% (95% CI: -2.4, 23.7, P = 0.100) and 55.3% (95% CI: 15.3, 76.4, P = 0.014) in the participants with inactivated COVID-19 vaccination history, as well as 87.0% (95% CI: 72.6, 93.9, P < 0.001) and 84.2% (95% CI: -41.8, 98.2, P = 0.099) in the naïve participants, respectively. Interpretation: When administered as a booster to individuals with a history of inactivated COVID-19 vaccination, a single-dose of dNS1-RBD provides protection against infections requiring medical attention at least in the short-term after vaccination. The data also showed that a single-dose of dNS1-RBD is protective against symptomatic SARS-CoV-2 infections as a primary immunization for individuals without prior exposure, but due to the limited sample size of naïve participants, further research with a larger sample size is needed to make a solid conclusion. Funding: Xiamen Science and Technology Bureau 2022 General Science and Technology Plan Project and the Bill & Melinda Gates Foundation.

6.
Front Public Health ; 11: 1079877, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860401

RESUMEN

Background: Quantitative assessment of the risk of local transmission from imported dengue cases makes a great challenge to the development of public health in China. The purpose of this study is to observe the risk of mosquito-borne transmission in Xiamen City through ecological and insecticide resistance monitoring. Quantitative evaluation of mosquito insecticide resistance, community population and the number of imported cases affecting the transmission of dengue fever (DF) in Xiamen was carried out based on transmission dynamics model, so as to reveal the correlation between key risk factors and DF transmission. Methods: Based on the dynamics model and combined with the epidemiological characteristics of DF in Xiamen City, a transmission dynamics model was built to simulate the secondary cases caused by imported cases to evaluate the transmission risk of DF, and to explore the influence of mosquito insecticide resistance, community population and imported cases on the epidemic situation of DF in Xiamen City. Results: For the transmission model of DF, when the community population is between 10,000 and 25,000, changing the number of imported DF cases and the mortality rate of mosquitoes will have an impact on the spread of indigenous DF cases, however, changing the birth rate of mosquitoes did not gain more effect on the spread of local DF transmission. Conclusions: Through the quantitative evaluation of the model, this study determined that the mosquito resistance index has an important influence on the local transmission of dengue fever caused by imported cases in Xiamen, and the Brayton index can also affect the local transmission of the disease.


Asunto(s)
Dengue , Salud Pública , Animales , Medición de Riesgo , China/epidemiología , Factores de Riesgo , Dengue/epidemiología
7.
Vaccines (Basel) ; 11(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36992116

RESUMEN

OBJECTIVE: Vaccine effectiveness can measure herd immunity, but the effectiveness of inactivated vaccines in Xiamen remains unclear. Our study was designed to understand the herd immunity of the COVID-19 inactivated vaccine against the SARA-CoV-2 Delta variant in the real world of Xiamen. METHODS: We carried out a test-negative case-control study to explore the vaccine's effectiveness. Participants aged over 12 years were recruited. A logistic regression was used to estimate the odds ratio (OR) of the vaccine among cases and controls. RESULTS: This outbreak began with factory transmission clusters, and spread to families and communities during the incubation period. Sixty percent of cases were confirmed in a quarantine site. A huge mass of confirmed cases (94.49%) was identified within three days, and nearly half of them had a low Ct value. Following an adjustment for age and sex, a single dose of inactivated SARS-CoV-2 vaccine yielded the vaccine effectiveness (VE) of the overall case, of 57.01% (95% CI: -91.44~86.39%), the fully VE was 65.72% (95% CI: -48.69~88.63%) against COVID-19, 59.45% against moderate COVID-19 and 38.48% against severe COVID-19, respectively. The VE of fully vaccinated individuals was significantly higher in females than in males (73.99% vs. 46.26%). The VE among participants aged 19~40 and 41~61 years was 78.75% and 66.33%, respectively, which exceeds the WHO's minimal threshold. Nevertheless, the VE in people under 18 and over 60 years was not observed because of the small sample size. CONCLUSIONS: The single-dose vaccine had limited effectiveness in preventing infection of the Delta variant. The two doses of inactivated vaccine could effectively prevent infection, and clinical mild, moderate, and severe illness caused by the SARS-CoV-2 Delta variant in people aged 18-60 years in the real world.

8.
BMC Genomics ; 24(1): 89, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849926

RESUMEN

BACKGROUND: Near 70% of hepatocellular carcinoma (HCC) recurrence is early recurrence within 2-year post surgery. Long non-coding RNAs (lncRNAs) are intensively involved in HCC progression and serve as biomarkers for HCC prognosis. The aim of this study is to construct a lncRNA-based signature for predicting HCC early recurrence. METHODS: Data of RNA expression and associated clinical information were accessed from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) database. Recurrence associated differentially expressed lncRNAs (DELncs) were determined by three DEG methods and two survival analyses methods. DELncs involved in the signature were selected by three machine learning methods and multivariate Cox analysis. Additionally, the signature was validated in a cohort of HCC patients from an external source. In order to gain insight into the biological functions of this signature, gene sets enrichment analyses, immune infiltration analyses, as well as immune and drug therapy prediction analyses were conducted. RESULTS: A 4-lncRNA signature consisting of AC108463.1, AF131217.1, CMB9-22P13.1, TMCC1-AS1 was constructed. Patients in the high-risk group showed significantly higher early recurrence rate compared to those in the low-risk group. Combination of the signature, AFP and TNM further improved the early HCC recurrence predictive performance. Several molecular pathways and gene sets associated with HCC pathogenesis are enriched in the high-risk group. Antitumor immune cells, such as activated B cell, type 1 T helper cell, natural killer cell and effective memory CD8 T cell are enriched in patients with low-risk HCCs. HCC patients in the low- and high-risk group had differential sensitivities to various antitumor drugs. Finally, predictive performance of this signature was validated in an external cohort of patients with HCC. CONCLUSION: Combined with TNM and AFP, the 4-lncRNA signature presents excellent predictability of HCC early recurrence.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , alfa-Fetoproteínas , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Aprendizaje Automático , ARN Largo no Codificante/genética , Estadificación de Neoplasias
9.
Mater Horiz ; 10(4): 1087-1104, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36629521

RESUMEN

Recently, two-dimensional (2D) layered nanomaterials have become promising candidates for surface-enhanced Raman scattering (SERS) substrates due to their unique characteristics of ultrathin layer structure, outstanding optical properties and good biocompatibility, significantly contributing to remarkable SERS sensitivity, stability, and compatibility. Unlike traditional SERS substrates, 2D nanomaterials possess unparalleled layer-dependent, phase transition induced and anisotropic optical properties, which as driving forces significantly promote the SERS performance and development, as well as greatly enrich the SERS substrates and provide versatile resources for SERS research. For a profound understanding of the SERS effect of 2D nanomaterials, a review concentrating on these driving forces for SERS enhancement on 2D nanomaterials is written here for the first time, which strongly emphasizes the importance and influence of these driving forces on the SERS effect of 2D nanomaterials, including their intrinsic physical and chemical properties and external influencing factors. Moreover, the essential mechanisms of these driving forces for the SERS effect are also elaborated systematically. Finally, the challenges and future perspectives of SERS substrates based on 2D nanomaterials are concluded. This review will provide guiding principles and strategies for designing highly sensitive 2D nanomaterial SERS substrates and extending their potential applications based on SERS.

12.
Front Public Health ; 10: 887146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910883

RESUMEN

Background: In September 2021, there was an outbreak of coronavirus disease 2019 (COVID-19) in Xiamen, China. Various non-pharmacological interventions (NPIs) and pharmacological interventions (PIs) have been implemented to prevent and control the spread of the disease. This study aimed to evaluate the effectiveness of various interventions and to identify priorities for the implementation of prevention and control measures. Methods: The data of patients with COVID-19 were collected from 8 to 30 September 2021. A Susceptible-Exposed-Infectious-Recovered (SEIR) dynamics model was developed to fit the data and simulate the effectiveness of interventions (medical treatment, isolation, social distancing, masking, and vaccination) under different scenarios. The effective reproductive number (Reff ) was used to assess the transmissibility and transmission risk. Results: A total of 236 cases of COVID-19 were reported in Xiamen. The epidemic curve was divided into three phases (Reff = 6.8, 1.5, and 0). Notably, the cumulative number of cases was reduced by 99.67% due to the preventive and control measures implemented by the local government. In the effective containment stage, the number of cases could be reduced to 115 by intensifying the implementation of interventions. The total number of cases (TN) could be reduced by 29.66-95.34% when patients voluntarily visit fever clinics. When only two or three of these measures are implemented, the simulated TN may be greater than the actual number. As four measures were taken simultaneously, the TN may be <100, which is 57.63% less than the actual number. The simultaneous implementation of five interventions could rapidly control the transmission and reduce the number of cases to fewer than 25. Conclusion: With the joint efforts of the government and the public, the outbreak was controlled quickly and effectively. Authorities could promptly cut the transmission chain and control the spread of the disease when patients with fever voluntarily went to the hospital. The ultimate effect of controlling the outbreak through only one intervention was not obvious. The combined community control and mask wearing, along with other interventions, could lead to rapid control of the outbreak and ultimately lower the total number of cases. More importantly, this would mitigate the impact of the outbreak on society and socioeconomics.


Asunto(s)
COVID-19 , Número Básico de Reproducción , COVID-19/epidemiología , COVID-19/prevención & control , China/epidemiología , Brotes de Enfermedades/prevención & control , Humanos , SARS-CoV-2
13.
Infect Dis Model ; 7(3): 486-497, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35968394

RESUMEN

Objective: This study elaborated the natural history parameters of Delta variant, explored the differences in detection cycle thresholds (Ct) among cases. Methods: Natural history parameters were calculated based on the different onset time and exposure time of the cases. Intergenerational relationships between generations of cases were calculated. Differences in Ct values of cases by gender, age, and mode of detection were analyzed statistically to assess the detoxification capacity of cases. Results: The median incubation period was 4 days; the detection time for cases decreased from 25 to 7 h as the outbreak continued. The average generation time (GT), time interval between transmission generations (TG) and serial interval (SI) were 3.6 ± 2.6 days, 1.67 ± 2.11 days and 1.7 ± 3.0 days. Among the Ct values, we found little differences in testing across companies, but there were some differences in the gender of detected genes. The Ct values continuous to decreased with age, but increased when the age was greater than 60. Conclusion: This epidemic was started from aggregation of factories. It is more reasonable to use SI to calculate the effective reproduction number and the time-varying reproduction number. And the analysis of Ct values can improve the positive detection rate and improve prevention and control measures.

14.
Natl Sci Rev ; 9(5): nwab098, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35591910

RESUMEN

Two-dimensional (2D) indium selenide (InSe) has been widely studied for application in transistors and photodetectors, which benefit from its excellent optoelectronic properties. Among the three specific polytypes (γ-, ϵ- and ß-phase) of InSe, only the crystal lattice of InSe in ß-phase (ß-InSe) belongs to a non-symmetry point group of [Formula: see text], which indicates stronger anisotropic transport behavior and potential in the polarized photodetection of ß-InSe-based optoelectronic devices. Therefore, we prepare the stable p-type 2D-layered ß-InSe via temperature gradient method. The anisotropic Raman, transport and photoresponse properties of ß-InSe have been experimentally and theoretically proven, showing that the ß-InSe-based device has a ratio of 3.76 for the maximum to minimum dark current at two orthogonal orientations and a high photocurrent anisotropic ratio of 0.70 at 1 V bias voltage, respectively. The appealing anisotropic properties demonstrated in this work clearly identify ß-InSe as a competitive candidate for filter-free polarization-sensitive photodetectors.

15.
Front Med (Lausanne) ; 9: 1079842, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687425

RESUMEN

Objective: This study uses four COVID-19 outbreaks as examples to calculate and compare merits and demerits, as well as applicational scenarios, of three methods for calculating reproduction numbers. Method: The epidemiological characteristics of the COVID-19 outbreaks are described. Through the definition method, the next-generation matrix-based method, and the epidemic curve and serial interval (SI)-based method, corresponding reproduction numbers were obtained and compared. Results: Reproduction numbers (R eff ), obtained by the definition method of the four regions, are 1.20, 1.14, 1.66, and 1.12. Through the next generation matrix method, in region H R eff = 4.30, 0.44; region P R eff = 6.5, 1.39, 0; region X R eff = 6.82, 1.39, 0; and region Z R eff = 2.99, 0.65. Time-varying reproduction numbers (R t ), which are attained by SI of onset dates, are decreasing with time. Region H reached its highest R t = 2.8 on July 29 and decreased to R t < 1 after August 4; region P reached its highest R t = 5.8 on September 9 and dropped to R t < 1 by September 14; region X had a fluctuation in the R t and R t < 1 after September 22; R t in region Z reached a maximum of 1.8 on September 15 and decreased continuously to R t < 1 on September 19. Conclusion: The reproduction number obtained by the definition method is optimal in the early stage of epidemics with a small number of cases that have clear transmission chains to predict the trend of epidemics accurately. The effective reproduction number R eff , calculated by the next generation matrix, could assess the scale of the epidemic and be used to evaluate the effectiveness of prevention and control measures used in epidemics with a large number of cases. Time-varying reproduction number R t , obtained via epidemic curve and SI, can give a clear picture of the change in transmissibility over time, but the conditions of use are more rigorous, requiring a greater sample size and clear transmission chains to perform the calculation. The rational use of the three methods for reproduction numbers plays a role in the further study of the transmissibility of COVID-19.

16.
iScience ; 24(10): 103116, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34646981

RESUMEN

Two-dimensional black phosphorus (BP) has triggered tremendous research interest owing to its unique crystal structure, high carrier mobility, and tunable direct bandgap. Preparation of few-layer BP with high quality and stability is very important for its related research and applications in biomedicine, electronics, and optoelectronics. In this review, the synthesis methods of BP, including the preparation of bulk BP crystal which is an important raw material for preparing few-layer BP, the popular top-down methods, and some direct growth strategies of few-layer BP are comprehensively overviewed. Then chemical ways to enhance the stability of few-layer BP are concretely introduced. Finally, we propose a selection rule of preparation methods of few-layer BP according to the requirement of specific BP properties for different applications. We hope this review would bring some insight for future researches on BP and contributes to the acceleration of BP's commercial progress.

17.
Nanomicro Lett ; 13(1): 172, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34383132

RESUMEN

Thanks to the excellent optoelectronic properties, lead halide perovskites (LHPs) have been widely employed in high-performance optoelectronic devices such as solar cells and light-emitting diodes. However, overcoming their poor stability against water has been one of the biggest challenges for most applications. Herein, we report a novel hot-injection method in a Pb-poor environment combined with a well-designed purification process to synthesize water-dispersible CsPbBr3 nanocrystals (NCs). The as-prepared NCs sustain their superior photoluminescence (91% quantum yield in water) for more than 200 days in an aqueous environment, which is attributed to a passivation effect induced by excess CsBr salts. Thanks to the ultra-stability of these LHP NCs, for the first time, we report a new application of LHP NCs, in which they are applied to electrocatalysis of CO2 reduction reaction. Noticeably, they show significant electrocatalytic activity (faradaic yield: 32% for CH4, 40% for CO) and operation stability (> 350 h).

19.
Adv Sci (Weinh) ; 8(10): 2002284, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34026429

RESUMEN

2D layered materials turn out to be the most attractive hotspot in materials for their unique physical and chemical properties. A special class of 2D layered material refers to materials exhibiting phase transition based on environment variables. Among these materials, transition metal dichalcogenides (TMDs) act as a promising alternative for their unique combination of atomic-scale thickness, direct bandgap, significant spin-orbit coupling and prominent electronic and mechanical properties, enabling them to be applied for fundamental studies as catalyst materials. Metal phosphorous trichalcogenides (MPTs), as another potential catalytic 2D phase transition material, have been employed for their unusual intercalation behavior and electrochemical properties, which act as a secondary electrode in lithium batteries. The preparation of 2D TMD and MPT materials has been extensively conducted by engineering their intrinsic structures at the atomic scale. In this study, advanced synthesis methods of preparing 2D TMD and MPT materials are tested, and their properties are investigated, with stress placed on their phase transition. The surge of this type of report is associated with water-splitting catalysis and other catalytic purposes. This study aims to be a guideline to explore the mentioned 2D TMD and MPT materials for their catalytic applications.

20.
Adv Sci (Weinh) ; 8(15): e2100503, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34014610

RESUMEN

Great success in 2D van der Waals (vdW) heterostructures based photodetectors is obtained owing to the unique electronic and optoelectronic properties of 2D materials. Performance of photodetectors based 2D vdW heterojunctions at atomic scale is more sensitive to the nanointerface of the heterojunction than conventional bulk heterojunction. Here, a nanoengineered heterostructure for the first-time demonstration of a nanointerface using an inserted graphene layer between black phosphorus (BP) and InSe which inhibits interlayer recombination and greatly improves photodetection performances is presented. In addition, a transition of the transport characteristics of the device is induced by graphene, from diffusion motion of minority carriers to drift motion of majority carriers. These two reasons together with an internal photoemission effect make the BP/G/InSe-based photodetector have ultrahigh specific detectivity at room temperature. The results demonstrate that high-performance vdW heterostructure photodetectors can be achieved through simple structural manipulation of the heterojunction interface on nanoscale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...