Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1369478, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035441

RESUMEN

Acute coronary syndrome (ACS) is a predominant cause of mortality, and the prompt and precise identification of this condition is crucial to minimize its impact. Recent research indicates that gut microbiota is associated with the onset, progression, and treatment of ACS. To investigate its role, we sequenced the gut microbiota of 38 ACS patients before and after percutaneous coronary intervention and statin therapy at three time points, examining differential species and metabolic pathways. We observed a decrease in the abundance of Parabacteroides, Escherichia, and Blautia in patients after treatment and an increase in the abundance of Gemalla, Klebsiella variicola, Klebsiella pneumoniae, and others. Two pathways related to sugar degradation were more abundant in patients before treatment, possibly correlated with disorders of sugar metabolism and risk factors, such as hyperglycemia, insulin resistance, and insufficient insulin secretion. Additionally, seven pathways related to the biosynthesis of vitamin K2 and its homolog were reduced after treatment, suggesting that ACS patients may gradually recover after therapy. The gut microbiota of patients treated with different statins exhibited notable differences after treatment. Rosuvastatin appeared to promote the growth of anti-inflammatory bacteria while reducing pro-inflammatory bacteria, whereas atorvastatin may have mixed effects on pro-inflammatory and anti-inflammatory bacteria while increasing the abundance of Bacteroides. Our research will provide valuable insights and enhance comprehension of ACS, leading to better patient diagnosis and therapy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37459963

RESUMEN

The gut microbiome plays a significant role in methamphetamine addiction. Previous studies using short-read amplicon sequencing have described alterations in microbiota at the genus level and predicted function, in which taxonomic resolution is insufficient for accurate functional measurements. To address this limitation, we employed metagenome sequencing to intuitively associate species to functions of gut microbiota in methamphetamine-induced conditioned place preference. We observed differential perturbations of species-level functional profiling of the gut microbiota across phases of METH-induced CPP, with alterations in SCFA metabolism and bacterial motility at the acquisition phase and substance dependence-alcoholism pathway and amino acid metabolism at the extinction phase. Our findings suggest that reduced beneficial bacteria, i.e., Lactobacillus reuteri, contributed to the alteration of SCFA metabolism, while the increased abundance of Akkermansia muciniphila during the extinction phase may be associated with altered phenylalanine, tyrosine, and tryptophan metabolism and substance dependence pathway. Our study further supports the association between specific microbial taxa and METH-induced rewarding.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Microbioma Gastrointestinal , Metanfetamina , Metanfetamina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Clásico , Recompensa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA