Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Neural Regen Res ; 20(6): 1613-1627, 2025 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38845225

RESUMEN

Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.

2.
J Stroke Cerebrovasc Dis ; 33(8): 107833, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925449

RESUMEN

BACKGROUND AND PURPOSE: Flow-diversion treatment for intracranial aneurysms has been associated with the development of in-stent stenosis (ISS) for unclear reasons. We assess whether the size of the stent relative to that of the vessel (the stent-to-vessel diameter ratio, or SVR) may be predictive of the development of ISS after treatment with flow diverters. METHODS: We retrospectively reviewed patients with unruptured intracranial aneurysms who underwent flow-diversion treatment using either the Pipeline or Tubridge embolization device from September 2018 to September 2022. The relationship between SVR and ISS was analyzed. Multiple logistic regression models were used to determine the significant predictors. RESULTS: A total of 458 patients with 481 aneurysms were included. In a mean angiographic follow-up of 10.73 ± 3.97 months, ISS was detected in 68 cases (14.1 %). After adjusting for candidate variables, a higher distal SVR (DSVR) was associated with an increased risk of ISS (adjusted odds ratio [aOR] = 3.420, 95 % confidence interval [CI] = 1.182 - 9.889, p = 0.023). We conducted a subgroup analysis of the two different flow diverters to assess the effects of their individual characteristics. Our results showed a significant association between the DSVR and the incidence of ISS in both the Pipeline (aOR = 4.033, 95 % CI = 1.156-14.072, p = 0.029) and Tubridge groups (aOR = 11.981, 95 % CI=1.005-142.774, p = 0.049). CONCLUSION: A higher DSVR was associated with an increased risk of ISS. This may help neurointerventionalists select an appropriate stent size when conducting flow-diversion treatment for intracranial aneurysms.


Asunto(s)
Procedimientos Endovasculares , Aneurisma Intracraneal , Diseño de Prótesis , Stents , Humanos , Aneurisma Intracraneal/terapia , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/fisiopatología , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Factores de Riesgo , Anciano , Resultado del Tratamiento , Procedimientos Endovasculares/efectos adversos , Procedimientos Endovasculares/instrumentación , Medición de Riesgo , Factores de Tiempo , Embolización Terapéutica/instrumentación , Embolización Terapéutica/efectos adversos , Adulto , Angiografía Cerebral , Circulación Cerebrovascular , Grado de Desobstrucción Vascular
3.
Brain Res ; 1839: 149010, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763503

RESUMEN

OBJECTIVE: Cerebral blood perfusion (CBP) reduction is a prevalent complication following subarachnoid hemorrhage (SAH) in clinical practice, often associated with long-term cognitive impairment and prognosis. Electroacupuncture (EA), a widely utilized traditional Chinese therapy for central nervous system disorders, has demonstrated promising therapeutic effects. This study aims to investigate the therapeutic potential of EA in restoring CBP in SAH rats and to explore the mechanisms involving HIF-1α in this process. METHODS: Rats were randomly assigned to one of five groups, including Sham, SAH, EA, EA + Saline, and EA + dimethyloxallyl glycine (DMOG) groups. EA treatment was administered for 10 min daily, while DMOG were intraperitoneally injected. Behavioral tests, cerebral blood flow monitoring, vascular thickness measurement, western blotting, and immunofluorescence staining were conducted to assess the therapeutic effects of EA on cerebral blood flow. RESULTS: SAH resulted in elevated levels of HIF-1α, endothelin (ET), ICAM-1, P-SELECTIN, E-SELECTIN, and decreased level of eNOS in the brain. This led to cerebral vasospasm, decreased CBF, and cognitive deficits in the rat SAH model. EA intervention downregulated the expression of HIF-1α, ET, ICAM-1, P-SELECTIN, and E-SELECTIN, while increasing eNOS expression. This alleviated cerebral vasospasm, restored CBF, and improved cognitive function. However, the administration of the HIF-1α stabilizer (DMOG) counteracted the therapeutic effects of EA. CONCLUSION: EA promotes the recovery of cerebral blood flow after SAH injury, attenuates cerebral vasospasm, and accelerates the recovery of cognitive dysfunction, and its mechanism of action may be related to the inhibition of the HIF-1α signaling pathway.


Asunto(s)
Circulación Cerebrovascular , Electroacupuntura , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratas Sprague-Dawley , Hemorragia Subaracnoidea , Animales , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Electroacupuntura/métodos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratas , Circulación Cerebrovascular/fisiología , Circulación Cerebrovascular/efectos de los fármacos , Vasoespasmo Intracraneal/metabolismo , Vasoespasmo Intracraneal/etiología , Vasoespasmo Intracraneal/terapia , Modelos Animales de Enfermedad , Encéfalo/metabolismo
4.
J Neurointerv Surg ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719444

RESUMEN

BACKGROUND: Flow diverter devices (FDs) are increasingly used for treating unruptured intracranial aneurysms (UIAs), but limited studies compared different FDs. OBJECTIVE: To conduct a propensity score matched analysis comparing the Pipeline embolization device (PED) and Tubridge embolization device (TED) for UIAs. METHODS: Patients with UIAs treated with either PED or TED between July 2016 and July 2022 were included. Propensity score matching was performed to adjust for age, sex, comorbidities, smoking, drinking, aneurysm size, morphology, neck, location, parent artery diameter, adjunctive coiling, and angiographic follow-up duration. Perioperative complications and clinical and angiographic outcomes were compared after matching. RESULTS: 735 patients treated by PED and 290 patients treated by TED were enrolled. Compared with the PED group, patients in the TED group had a greater number of women and patients with ischemia, a smaller proportion of vertebrobasilar and non-saccular aneurysms, a smaller size and neck, and fewer adjunctive coils and overlapping stents, but a larger parent artery diameter and lumen disparities. After adjusting for these differences, 275 pairs were matched. No differences were found in perioperative complications (4.4% vs 2.5%, P=0.350), in-stent stenosis (16.0% vs 15.6%, P>0.999), or favorable prognosis (98.9% vs 98.5%, P>0.999). However, PED showed a trend towards better complete occlusion over a median 8-month angiographic follow-up (81.8% vs 75.3%, P=0.077). CONCLUSION: Compared with PED, TED provides a comparable rate of perioperative and short-term outcomes. Nevertheless, a better occlusion status in the PED group needs to be further verified over a longer follow-up period.

5.
Transl Stroke Res ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356020

RESUMEN

The inflammatory response following subarachnoid hemorrhage (SAH) may lead to Early Brain Injury and subsequently contribute to poor prognosis such as cognitive impairment in patients. Currently, there is a lack of effective strategies for SAH to ameliorate inflammation and improve cognitive impairment in clinical. This study aims to examine the inhibitory impact of remote ischemic post-conditioning (RIPostC) on the body's inflammatory response by regulating Th17/Treg cell homeostasis after SAH. The ultimate goal is to search for potential early treatment targets for SAH. The rat SAH models were made by intravascular puncture of the internal carotid artery. The intervention of RIPostC was administered for three consecutive days immediately after successful modeling. Behavioral experiments including the Morris water maze and Y-maze tests were conducted to assess cognitive functions such as spatial memory, working memory, and learning abilities 2 weeks after successful modeling. The ratio of Th17 cells and Treg cells in the blood was detected using flow cytometry. Immunofluorescence was used to observe the infiltration of neutrophils into the brain. Signal transducers and activators of transcription 5 (STAT5) and signal transducers and activators of transcription 3 (STAT3) phosphorylation levels, receptor-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) levels were detected by Western blot. The levels of anti-inflammatory factors (IL-2, IL-10, IL-5, etc.) and pro-inflammatory factors (IL-6, IL-17, IL-18, TNF-α, IL-14, etc.) in blood were detected using Luminex Liquid Suspension Chip Assay. RIPostC significantly improved the cognitive impairment caused by SAH in rats. The results showed that infiltration of Th17 cells and neutrophils into brain tissue increased after SAH, leading to the release of pro-inflammatory factors (IL-6, IL-17, IL-18, and TNF-α). This response can be inhibited by RIPostC. Additionally, RIPostC facilitates the transfer of Treg from blood to the brain and triggers the release of anti-inflammatory (IL-2, IL-10, and IL-5) factors to suppress the inflammation following SAH. Finally, it was found that RIPostC increased the phosphorylation of STAT5 while decreasing the phosphorylation of STAT3. RIPostC reduces inflammation after SAH by partially balancing Th17/Treg cell homeostasis, which may be related to downregulation of STAT3 and upregulation of STAT5 phosphorylation, which ultimately alleviates cognitive impairment in rats. Targeting Th17/Treg cell homeostasis may be a promising strategy for early SAH treatment.

6.
Transl Stroke Res ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935878

RESUMEN

Myelin sheath injury contributes to cognitive deficits following subarachnoid hemorrhage (SAH). G protein-coupled receptor 17 (GPR17), a membrane receptor, negatively regulates oligodendrocyte precursor cell (OPC) differentiation in both developmental and pathological contexts. Nonetheless, GPR17's role in modulating OPC differentiation, facilitating remyelination post SAH, and its interaction with downstream molecules remain elusive. In a rat SAH model induced by arterial puncture, OPCs expressing GPR17 proliferated prominently by day 14 post-onset, coinciding with compromised myelin sheath integrity and cognitive deficits. Selective Gpr17 knockdown in oligodendrocytes (OLs) via adeno-associated virus (AAV) administration revealed that reduced GPR17 levels promoted OPC differentiation, restored myelin sheath integrity, and improved cognitive deficits by day 14 post-SAH. Moreover, GPR17 knockdown attenuated the elevated expression of the inhibitor of DNA binding 2 (ID2) post-SAH, suggesting a GPR17-ID2 regulatory axis. Bi-directional modulation of ID2 expression in OLs using AAV unveiled that elevated ID2 counteracted the restorative effects of GPR17 knockdown. This resulted in hindered differentiation, exacerbated myelin sheath impairment, and worsened cognitive deficits. These findings highlight the pivotal roles of GPR17 and ID2 in governing OPC differentiation and axonal remyelination post-SAH. This study positions GPR17 as a potential therapeutic target for SAH intervention. The interplay between GPR17 and ID2 introduces a novel avenue for ameliorating cognitive deficits post-SAH.

7.
Brain Res Bull ; 202: 110743, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591025

RESUMEN

Neuroinflammation and white matter microstructure damage are important causes of cognitive impairment after subarachnoid hemorrhage (SAH). Nod-like receptor protein 3 (NLRP3) plays an important role in neuroinflammation after SAH and may be a potential therapeutic target for treatment of white matter microstructure injury. In this study, we observed whether MCC950, a specific inhibitor of the NLRP3 inflammasome, exerted a therapeutic effect after SAH. The SAH model was induced by endovascular perforation in SpragueDawley rats. MCC950 was injected intraperitoneally 1 h after SAH at a dose of 10 mg/kg. The results showed that MCC950 significantly attenuated white matter microstructure damage in some brain regions, and behavioral experiments confirmed that MCC950 ameliorated cognitive function in rats after SAH, which may provide a new method for the treatment of cognitive dysfunction in SAH patients.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Sustancia Blanca , Animales , Ratas , Lesiones Encefálicas/metabolismo , Cognición , Enfermedades Neuroinflamatorias , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Sulfonamidas/farmacología , Sustancia Blanca/metabolismo
9.
Heliyon ; 9(3): e14475, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36967957

RESUMEN

Subarachnoid hemorrhage refers to an uncommon but severe subtype of stroke leading to high mortality and disability rates. Electroacupuncture, a traditional Chinese medical therapy combined with modern technology, shows evident curative effects on cerebral vascular diseases. This study attempts to investigate the possible treatment effects and mechanisms of EA on early brain injury after SAH. Data were gathered among sham group, SAH-induced group, and EA-treated group of male SD rats, concerning mortality rates, weight loss, rotarod latencies, cerebral blood flow, cell apoptosis, pro-inflammatory cytokines releasing, apoptotic protein level, microglia activation and related signal pathway. All results were collected 24-72 h after SAH induction. EA treatment demonstrated significant improvement on motor function 24 h after SAH without significant changes in mortality rate, weight loss, and cerebral blood flow. Another important finding was that EA regulated Bax and Bcl-2 imbalance and reduced cleaved casepase-3 caused by SAH. Additionally, levels of TNF-α, IL-1ß, IL-6 were suppressed. The neuron apoptosis was suppressed by EA. The M1 polarization of activated microglia decreased while M2 polarized phenotype increased after EA treatment. Furthermore, pSTAT3-NOX2 signal axis, the M1 phenotype related activation pathway, was depressed after EA treatment. These findings suggested that EA improved motor deficits and ameliorated early brain injury after SAH probably via decreasing neuron apoptosis and anti-inflammation, which may involve modulation of microglia polarization. Taken together, EA may be a potential therapy for SAH treatment.

10.
Curr Neurovasc Res ; 20(1): 5-13, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36588331

RESUMEN

BACKGROUND AND PURPOSE: Several pieces of evidence suggest that serum lactate hydrogenase (LDH) level is associated with the pathological process of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH). This research aimed to investigate the associations of serum LDH level with the occurrence of DCI in aSAH patients. METHODS: A total of 122 patients diagnosed with aSAH within 72h of onset were retrospectively enrolled. The serum levels of LDH between 7:00-8:00 am on day 1, day 3 and day 7, patients' demographics, and clinical features were collected. Computed tomography perfusion was performed within 7 days after aSAH. The occurrence of DCI was recorded during the hospitalization. RESULTS: Among all the enrolled patients, 43 (35.2%) developed DCI during hospitalization. Patients occurred DCI were always accompanied by more serious clinical features and found with higher serum LDH levels. LDH levels on day 3 and day 7 after onset were independently associated with the occurrence of DCI and showed high predictive value according to the receiver operating characteristic (ROC) curve. Moreover, there was a strong correlation between LDH and mean cerebral blood flow, transit time, and mean time to peak. CONCLUSION: Serum LDH level on day 3 and day 7 may be a valuable, convenient, and rapid predictive indicator for the occurrence of DCI in aSAH patients.


Asunto(s)
Isquemia Encefálica , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/diagnóstico por imagen , Estudios Retrospectivos , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico por imagen , Infarto Cerebral/complicaciones , Perfusión
11.
Metab Brain Dis ; 38(2): 687-698, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36383326

RESUMEN

Subarachnoid hemorrhage (SAH) is a devastating cerebral vascular disease which causes neurological deficits including long-term cognitive deficit. Demyelination of white matter is correlated with cognitive deficit in SAH. Electroacupuncture (EA) is a traditional Chinese medical treatment which protects against cognitive deficit in varies of neurological diseases. However, whether EA exerts protective effect on cognitive function in SAH has not been investigated. The underlying mechanism of remyelination regulated by EA remains unclear. This study aimed to investigate the protective effects of EA on cognitive deficit in a rat model of SAH. SAH was induced in SD rats (n = 72) by endovascular perforation. Rats in EA group received EA treatment (10 min per day) under isoflurane anesthesia after SAH. Rats in SAH and sham groups received the same isoflurane anesthesia with no treatment. The mortality rate, neurological score, cognitive function, cerebral blood flow (CBF), and remyelination in sham, SAH and EA groups were assessed at 21 d after SAH.EA treatment alleviated cognitive deficits and myelin injury of rats compared with that in SAH group. Moreover, EA treatment enhanced remyelination in white matter and promoted the differentiation of OPCs after SAH. EA treatment inhibited the expression of Id2 and promoted the expression of SOX10 in oligodendrocyte cells. Additionally, the cerebral blood flow (CBF) of rats was increased by EA compared with that in SAH group. EA treatment exerts protective effect against cognitive deficit in the late phase of SAH. The underlying mechanisms involve promoting oligodendrocyte progenitor cell (OPC) differentiation and remyelination in white matter via regulating the expression of Id2 and SOX10. The improvement of CBF may also account for the protective effect of EA on cognitive function. EA treatment is a potential therapy for the treatment of cognitive deficit after SAH.


Asunto(s)
Electroacupuntura , Isoflurano , Células Precursoras de Oligodendrocitos , Remielinización , Hemorragia Subaracnoidea , Ratas , Animales , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/terapia , Hemorragia Subaracnoidea/metabolismo , Isoflurano/metabolismo , Oligodendroglía/metabolismo , Diferenciación Celular , Cognición
12.
Exp Neurol ; 360: 114293, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36493862

RESUMEN

BACKGROUND: Most patients with subarachnoid hemorrhage (SAH) do not exhibit brain parenchymal injury upon imaging but present significant blood-brain barrier (BBB) disruption and secondary neurological deficits. The aim of this study was to investigate whether stressed astrocytes act as a secondary barrier to exert a protective effect after SAH and to investigate the mechanism of glial limitan formation. METHODS: A total of 204 adult male C57BL/6 mice and an endovascular perforation SAH model were employed. The spatiotemporal characteristics of glial limitan formation after SAH were determined by immunofluorescence staining and transmission electron microscopy. The molecular mechanisms by which pericytes regulate glia limitans formation were analyzed using polymerase chain reaction, Western blotting, immunofluorescence staining and ELISA in a pericyte-astrocyte contact coculture system. The findings were validated ex vivo and in vivo using lentiviruses and inhibitors. Finally, pericytes were targeted to regulate glial limitan formation, and the effect of the glia limitans on secondary brain injury after SAH was evaluated by flow cytometry and analysis of neurological function. RESULTS: Stress-induced glial limitan formation occurred 1 day after SAH and markedly subsided 3 days after ictus. Pericytes regulated astrocyte glia limitan formation via EphA4/EphrinB2 signaling, inhibited inflammatory cell infiltration and altered neurological function. CONCLUSIONS: Astrocyte-derived glia limitans serve as a secondary protective barrier following BBB disruption after SAH in mice, and pericytes can regulate glial limitan formation and alter neurological function via EphA4/EphrinB2 signaling. Strategies for maintaining this secondary protective barrier may be novel treatment approaches for alleviating early brain injury after SAH.


Asunto(s)
Edema Encefálico , Lesiones Encefálicas , Hemorragia Subaracnoidea , Animales , Masculino , Ratones , Astrocitos , Barrera Hematoencefálica , Efrina-B2 , Ratones Endogámicos C57BL , Pericitos , Hemorragia Subaracnoidea/complicaciones , Receptor EphA4/metabolismo
13.
Transl Stroke Res ; 14(4): 530-544, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35749033

RESUMEN

Delayed cerebral ischemia (DCI) is the most severe complication after subarachnoid hemorrhage (SAH), and cortical spreading depolarization (CSD) is believed to play a vital role in it. However, the dynamic changes in cerebral blood flow (CBF) in response to CSD in typical SAH models have not been well investigated. Here, SAH was established in mice with endovascular perforation. Subsequently, the spontaneous CBF dropped instantly and then returned to baseline rapidly. After KCl application to the cortex, subsequent hypoperfusion waves occurred across the groups, while a lower average perfusion level was found in the SAH groups (days 1-7). Moreover, in the SAH groups, the number of CSD decreased within day 7, and the duration and spreading velocity of the CSD increased within day 3 and day 14, respectively. Next, we continuously monitored the local field potential (LFP) in the prefrontal cortex. The results showed that the decrease in the percentage of gamma oscillations lasted throughout the whole process in the SAH group. In the chronic phase after SAH, we found that the mice still had cognitive deficits but experienced no obvious tissue damage. In summary, SAH negatively affects the CBF responses to CSD and the spontaneous LFP activity and causes long-term cognitive deficits in mice. Based on these findings, in the specific phase after SAH, DCI is induced or exacerbated more easily by potential causers of CSD in clinical practice (edema, erythrocytolysis, inflammation), which may lead to neurological deterioration.


Asunto(s)
Isquemia Encefálica , Hemorragia Subaracnoidea , Ratones , Animales , Isquemia Encefálica/complicaciones , Infarto Cerebral/complicaciones , Circulación Cerebrovascular
14.
Front Neurol ; 14: 1277278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187159

RESUMEN

Objective: This study compared 2 representative cases with ruptured aneurysms to explore the role of hemodynamic and morphological parameters in evaluating the rupture risk of intracranial aneurysms (IAs). Methods: CTA and 3-dimensional rotational angiography (3DRA) of 3 IAs in 2 patients were retrospectively analyzed in this study. Hemodynamics and morphological parameters were compared between a ruptured IA and an unruptured IA in case1, and between before and after aneurysm rupture in case 2. Results: In case 1, the ruptured aneurysm had larger morphological parameters including size ratio (SR), aspect ratio (AR), aneurysm vessel angle (θF), Aneurysm inclination angle (θA), Undulation index (UI), Ellipticity index (EI), and Non-sphericity Index (NSI) than the unruptured aneurysm. And oscillatory shear index (OSI) is also larger. Higher rupture resemblance score (RRS) was shown in the ruptured aneurysm. In case 2, the aneurysm had one daughter sac after 2 years. Partial morphological and hemodynamic parameters including SR, AR, θF, θA, UI, EI, NSI, OSI, and relative residence time (RRT) increased, and normalized wall shear stress (NWSS) was significantly reduced. RRS increased during this period. Conclusion: SR and OSI may have predictive values for the risk of intracranial aneurysm rupture. It is possible that WSS Changes before and after IA rupture, yet the influence of high or low WSS on growth and rupture of IA remains unclear. RRS is promising to be used in the clinical assessment of the rupture risk of IAs and to guide the formulation of treatment plans.

15.
Oxid Med Cell Longev ; 2022: 8188404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222805

RESUMEN

We previously discovered that traumatic brain injury (TBI) induces significant perturbations in long noncoding RNA (lncRNA) levels in the mouse cerebral cortex, and lncRNA-AK046375 is one of the most significantly changed lncRNAs after TBI. lncRNA-AK046375 overexpression and knockdown models were successfully constructed both in vitro and in vivo. In cultured primary cortical neurons and astrocytes, lncRNA-AK046375 sequestered miR-491-5p, thereby enhancing the expression of metallothionein-2 (MT2), which ameliorated oxidative-induced cell injury. In addition, upregulated lncRNA-AK046375 promoted the recovery of motor, learning, and memory functions after TBI in C57BL/6 mice, and the underlying mechanism may be related to ameliorated apoptosis, inhibited oxidative stress, reduced brain edema, and relieved loss of tight junction proteins at the blood-brain barrier in the mouse brain. Therefore, we conclude that lncRNA-AK046375 enhances MT2 expression by sequestering miR-491-5p, ultimately strengthening antioxidant activity, which ameliorates neurological deficits post-TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Metalotioneína/genética , MicroARNs/genética , Estrés Oxidativo/genética , ARN Largo no Codificante/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Células Cultivadas , Peróxido de Hidrógeno/toxicidad , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores , Estrés Oxidativo/efectos de los fármacos , ARN Largo no Codificante/genética , Activación Transcripcional
16.
Genes Dis ; 9(1): 252-267, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35005122

RESUMEN

In early brain injury (EBI) after subarachnoid hemorrhage (SAH), white matter (WM) axonal injury plays a key role in the prognosis of the disease. The purpose of this study was to investigate the effects of phosphatase and tensin homolog deleted on chromosome ten (PTEN) on axonal injury and neuronal apoptosis post-SAH in rats and to find its underlying mechanism. Adeno-associated virus was injected into the lateral ventricle to suppress or promote PTEN. Neural function post-SAH in animals was determined by the modified Garcia score, beam balance, and Rotarod test, and the blood-brain barrier disruption was assessed by the brain water content. Axonal injury post-SAH was observed by TEM and determined by IF, and neuron apoptosis was measured by TUNEL staining. The mechanism was analyzed by Western blot to detect p-PTEN/PTEN, p-AKT/AKT, p-GSK-3ß/GSK-3ß, p-CRMP-2/CRMP-2, axonal injury marker ß-APP and pro- and anti-apoptosis proteins, including Bax and Bcl-2, expression. We found 1. After knocking down PTEN, neuronal apoptosis and axonal injury were alleviated, and nerve function and blood-brain barrier were protected; accordingly, after overexpression of PTEN, neuronal apoptosis and axon damage were aggravated, and nerve function damage and blood-brain barrier damage were increased. 2. PTEN and AKT/GSK-3ß/CRMP-2 pathway were jointly involved in regulating neuronal apoptosis and WM axon injury after SAH. According to our research, PTEN was a negative factor of EBI, and together with the AKT/GSK-3ß/CRMP-2 signaling pathway aggravates neuronal apoptosis and WM axon damage after SAH. Inhibition of PTEN expression may become a new target for SAH treatment.

17.
Neural Regen Res ; 17(3): 577-586, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34380897

RESUMEN

MicroRNA-491-5p (miR-491-5p) plays an important role in regulating cell proliferation and migration; however, the effect of miR-491-5p on neovascularization after traumatic brain injury remains poorly understood. In this study, a controlled cortical injury model in C57BL/6 mice and an oxygen-glucose deprivation model in microvascular endothelial cells derived from mouse brain were established to simulate traumatic brain injury in vivo and in vitro, respectively. In the in vivo model, quantitative real-time-polymerase chain reaction results showed that the expression of miR-491-5p increased or decreased following the intracerebroventricular injection of an miR-491-5p agomir or antagomir, respectively, and the expression of miR-491-5p decreased slightly after traumatic brain injury. To detect the neuroprotective effects of miR-491-p, neurological severity scores, Morris water maze test, laser speckle techniques, and immunofluorescence staining were assessed, and the results revealed that miR-491-5p downregulation alleviated neurological dysfunction, promoted the recovery of regional cerebral blood flow, increased the number of lectin-stained microvessels, and increased the survival of neurons after traumatic brain injury. During the in vitro experiments, the potential mechanism of miR-491-5p on neovascularization was explored through quantitative real-time-polymerase chain reaction, which showed that miR-491-5p expression increased or decreased in brain microvascular endothelial cells after transfection with an miR-491-5p mimic or inhibitor, respectively. Dual-luciferase reporter and western blot assays verified that metallothionein-2 was a target gene for miR-491-5p. Cell counting kit 8 (CCK-8) assay, flow cytometry, and 2?,7?-dichlorofluorescein diacetate (DCFH-DA) assay results confirmed that the downregulation of miR-491-5p increased brain microvascular endothelial cell viability, reduced cell apoptosis, and alleviated oxidative stress under oxygen-glucose deprivation conditions. Cell scratch assay, Transwell assay, tube formation assay, and western blot assay results demonstrated that miR-491-5p downregulation promoted the migration, proliferation, and tube formation of brain microvascular endothelial cells through a metallothionein-2-dependent hypoxia-inducible factor-1α/vascular endothelial growth factor pathway. These findings confirmed that miR-491-5p downregulation promotes neovascularization, restores cerebral blood flow, and improves the recovery of neurological function after traumatic brain injury. The mechanism may be mediated through a metallothionein-2-dependent hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway and the alleviation of oxidative stress. All procedures were approved by Ethics Committee of the First Affiliated Hospital of Chongqing Medical University, China (approval No. 2020-304) on June 22, 2020.

18.
J Neurochem ; 160(1): 13-33, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34160835

RESUMEN

Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating cerebrovascular disease with high mortality and morbidity. In recent years, a large number of studies have focused on the mechanism of early brain injury (EBI) and delayed cerebral ischemia (DCI), including vasospasm, neurotoxicity of hematoma and neuroinflammatory storm, after aSAH. Despite considerable efforts, no novel drugs have significantly improved the prognosis of patients in phase III clinical trials, indicating the need to further re-examine the multifactorial pathophysiological process that occurs after aSAH. The complex pathogenesis is reflected by the destruction of the dynamic balance of the energy metabolism in the nervous system after aSAH, which prevents the maintenance of normal neural function. This review focuses on the fluid metabolic pathways of the central nervous system (CNS), starting with ruptured aneurysms, and discusses the dysfunction of blood circulation, cerebrospinal fluid (CSF) circulation and the glymphatic system during disease progression. It also proposes a hypothesis on the metabolic disorder mechanism and potential therapeutic targets for aSAH patients. Cover Image for this issue: https://doi.org/10.1111/jnc.15384.


Asunto(s)
Circulación Cerebrovascular/fisiología , Sistema Glinfático/fisiología , Redes y Vías Metabólicas/fisiología , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/fisiopatología , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Humanos
19.
Front Neurol ; 12: 654419, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690905

RESUMEN

Background and Purpose: Primary brain swelling occurs in aneurysmal subarachnoid hemorrhage (aSAH) patients. The absence of a dynamic quantitative method restricts further study of primary brain swelling. This study compared differences in the change rate of brain volume (CRBV) between patients with and without primary brain swelling in the early stage of aSAH. Moreover, the relationship between CRBV and clinical outcomes was evaluated. Methods: Patients hospitalized within 24 h after aSAH were included in this retrospective study. Utilizing a qualitative standard established before the study to recognize primary brain swelling through brain CT after aSAH, clinical outcomes after 3 months of SAH were evaluated with a modified Rankin scale (mRS). The brain volume (BV) of each patient was calculated with a semiautomatic threshold algorithm of 3D-slicer, and the change in brain volume (CIBV) was obtained by subtracting the two extreme values (CIBV = BVmax - BVmin). The CRBV was obtained by CIBV/BVmin × 100%. The CRBV values that predicted unfavorable prognoses were estimated. Results: In total, 130 subjects were enrolled in the study. The mean CRBV in the non-swelling group and swelling group were 4.37% (±4.77) and 11.87% (±6.84), respectively (p < 0.05). CRBV was positively correlated with the length of hospital stay, blood in the ambient cistern, blood in the lateral ventricle, and lateral ventricular volume (Spearman ρ = 0.334; p < 0.001; Pearson ρ = 0.269, p = 0.002; Pearson ρ = 0.278, p = 0.001; Pearson ρ = 0.233, p = 0.008, respectively). Analysis of variance showed significant differences in CIBV, CRBV, blood in the ambient cistern, blood in the lateral ventricle, and lateral ventricular volume among varying modified Fisher scale (mFisher), with higher admission mFisher scale, indicating larger values of these variables. After adjusting for risk factors, the model showed that for every 1% increase in the CRBV, the probability of poor clinical prognosis increased by a factor of 1.236 (95% CI = 1.056-1.446). In the stratified analysis, the odds of worse clinical outcomes increased with increases in the CRBV. Receiver operating characteristic curve analysis showed that HH grade, mFisher scale, and score of CRBV (SCRBV) had diagnostic performance for predicting unfavorable clinical outcomes. Conclusion: Primary brain swelling increases brain volume after aSAH. The CRBV quantified by 3D-Slicer can be used as a volumetric representation of the degree of brain swelling. A larger CRBV in the early stage of aSAH is associated with poor prognosis. The CRBV can be used as a neuroimaging biomarker of early brain injury after bleeding and may be an effective predictor of patients' clinical prognoses.

20.
Aging (Albany NY) ; 13(8): 11752-11761, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33878031

RESUMEN

Early brain injury (EBI) is a major contributor to the high mortality and morbidity after subarachnoid hemorrhage (SAH). Inflammatory responses and neuronal apoptosis are important causes of EBI. Because 5- lipoxygenase (5-LOX) is known to be involved various central nervous system diseases, we investigated the effects of 5-LOX inhibition during EBI after SAH. Zileuton and LY294002 were used to inhibit expression of 5-LOX and Akt, respectively. We found that 5-LOX expression was significantly increased in the cytoplasm of cortical neurons after SAH and was accompanied by upregulated expression of the inflammatory factors LTB4, TNF-α, IL-1ß and IL-6; upregulation of the pro-apoptotic factor Bax; downregulation of the anti-apoptotic factor Bcl-2; and an increased apoptosis rate. Gastric Zileuton administration significantly suppressed all of those effects and improved neurological function. Zileuton also upregulated activated (phosphorylated) AKT levels, and these beneficial effects of Zileuton were abolished by intracerebroventricular infusion of the PI3K inhibitor LY294002. Taken together, these findings indicate that 5-LOX mediates pro-inflammatory and pro-apoptotic effects that contribute to EBI after SAH and that those effects are suppressed by activation of PI3K/Akt signaling. This suggests targeting 5-LOX may be an effective approach to treating EBI after SAH.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Inhibidores de la Lipooxigenasa/administración & dosificación , Neuronas/efectos de los fármacos , Hemorragia Subaracnoidea/tratamiento farmacológico , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Lesiones Encefálicas/inmunología , Lesiones Encefálicas/patología , Cromonas/administración & dosificación , Modelos Animales de Enfermedad , Humanos , Hidroxiurea/administración & dosificación , Hidroxiurea/análogos & derivados , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Infusiones Intraventriculares , Masculino , Morfolinas/administración & dosificación , Neuronas/inmunología , Neuronas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/administración & dosificación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/inmunología , Hemorragia Subaracnoidea/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA