Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 73(5): 649-652, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640415

RESUMEN

Body fat distribution is a predictor of metabolic health in obesity. In this Classics in Diabetes article, we revisit a 1985 Diabetes article by Swedish investigators Ohlson et al. This work was one of the first prospective population-based studies that established a relationship between abdominal adiposity and the risk for developing diabetes. Here, we discuss evolving concepts regarding the link between regional adiposity and diabetes and other chronic disorders. Moreover, we highlight fundamental questions that remain unresolved.


Asunto(s)
Adiposidad , Diabetes Mellitus Tipo 2 , Humanos , Factores de Riesgo , Estudios Prospectivos , Índice de Masa Corporal , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/metabolismo
2.
STAR Protoc ; 4(4): 102676, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38048219

RESUMEN

Recent studies have revealed cellular heterogeneity of mesenchymal stromal cells and immune cells in adipose tissue and emphasized the need for quantitative analysis of small numbers of functionally distinct cells using state-of-the-art "omics" technologies. Here, we present an optimized protocol for precise protein quantification from minute amounts of samples. We describe steps for isolation of mouse adipose progenitor cells, proteomics sample preparation, mass spectrometry measurement, and computational analysis. This protocol can be adapted to other samples with limited amounts. For complete details on the use and execution of this protocol, please refer to Shan et al. (2022).1.


Asunto(s)
Células Madre Mesenquimatosas , Proteómica , Animales , Ratones , Tejido Adiposo , Espectrometría de Masas
4.
Genes Dev ; 37(17-18): 781-800, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37798016

RESUMEN

Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.


Asunto(s)
Adipogénesis , Células Madre Mesenquimatosas , Humanos , Tejido Adiposo , Obesidad , Células del Estroma
5.
J Clin Invest ; 133(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37856216

RESUMEN

The G protein-coupled receptor 84 (GPR84), a medium-chain fatty acid receptor, has garnered attention because of its potential involvement in a range of metabolic conditions. However, the precise mechanisms underlying this effect remain elusive. Our study has shed light on the pivotal role of GPR84, revealing its robust expression and functional significance within brown adipose tissue (BAT). Mice lacking GPR84 exhibited increased lipid accumulation in BAT, rendering them more susceptible to cold exposure and displaying reduced BAT activity compared with their WT counterparts. Our in vitro experiments with primary brown adipocytes from GPR84-KO mice revealed diminished expression of thermogenic genes and reduced O2 consumption. Furthermore, the application of the GPR84 agonist 6-n-octylaminouracil (6-OAU) counteracted these effects, effectively reinstating the brown adipocyte activity. These compelling in vivo and in vitro findings converge to highlight mitochondrial dysfunction as the primary cause of BAT anomalies in GPR84-KO mice. The activation of GPR84 induced an increase in intracellular Ca2+ levels, which intricately influenced mitochondrial respiration. By modulating mitochondrial Ca2+ levels and respiration, GPR84 acts as a potent molecule involved in BAT activity. These findings suggest that GPR84 is a potential therapeutic target for invigorating BAT and ameliorating metabolic disorders.


Asunto(s)
Adipocitos Marrones , Calcio , Receptores Acoplados a Proteínas G , Animales , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Calcio/metabolismo , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Termogénesis/genética , Receptores Acoplados a Proteínas G/metabolismo , Mitocondrias/metabolismo , Mitocondrias/fisiología
6.
Cell Metab ; 35(3): 386-413, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36889280

RESUMEN

Adipose tissue exhibits remarkable plasticity with capacity to change in size and cellular composition under physiological and pathophysiological conditions. The emergence of single-cell transcriptomics has rapidly transformed our understanding of the diverse array of cell types and cell states residing in adipose tissues and has provided insight into how transcriptional changes in individual cell types contribute to tissue plasticity. Here, we present a comprehensive overview of the cellular atlas of adipose tissues focusing on the biological insight gained from single-cell and single-nuclei transcriptomics of murine and human adipose tissues. We also offer our perspective on the exciting opportunities for mapping cellular transitions and crosstalk, which have been made possible by single-cell technologies.


Asunto(s)
Adipocitos , Adipogénesis , Humanos , Animales , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Perfilación de la Expresión Génica , Diferenciación Celular
7.
Science ; 378(6617): 276-284, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36264811

RESUMEN

Misalignment of feeding rhythms with the light-dark cycle leads to disrupted peripheral circadian clocks and obesity. Conversely, restricting feeding to the active period mitigates metabolic syndrome through mechanisms that remain unknown. We found that genetic enhancement of adipocyte thermogenesis through ablation of the zinc finger protein 423 (ZFP423) attenuated obesity caused by consumption of a high-fat diet during the inactive (light) period by increasing futile creatine cycling in mice. Circadian control of adipocyte creatine metabolism underlies the timing of diet-induced thermogenesis, and enhancement of adipocyte circadian rhythms through overexpression of the clock activator brain and muscle Arnt-like protein-1 (BMAL1) ameliorated metabolic complications during diet-induced obesity. These findings uncover rhythmic creatine-mediated thermogenesis as an essential mechanism that drives metabolic benefits during time-restricted feeding.


Asunto(s)
Adipocitos , Relojes Circadianos , Ritmo Circadiano , Creatina , Proteínas de Unión al ADN , Dieta Alta en Grasa , Obesidad , Termogénesis , Factores de Transcripción , Animales , Ratones , Adipocitos/metabolismo , Factores de Transcripción ARNTL/genética , Creatina/metabolismo , Obesidad/etiología , Obesidad/prevención & control , Termogénesis/genética , Factores de Tiempo , Dieta Alta en Grasa/efectos adversos , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Ratones Noqueados
8.
Cell Rep ; 40(11): 111362, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103820

RESUMEN

Obesity is associated with increased cancer incidence and progression. However, the relationship between adiposity and cancer remains poorly understood at the mechanistic level. Here, we report that adipocytes from tumor-invasive mammary fat undergo de-differentiation to fibroblast-like precursor cells during tumor progression and integrate into the tumor microenvironment. Single-cell sequencing reveals that these de-differentiated adipocytes lose their original identities and transform into multiple cell types, including myofibroblast- and macrophage-like cells, with their characteristic features involved in immune response, inflammation, and extracellular matrix remodeling. The de-differentiated cells are metabolically distinct from tumor-associated fibroblasts but exhibit comparable effects on tumor cell proliferation. Inducing de-differentiation by Xbp1s overexpression promotes tumor progression despite lower adiposity. In contrast, promoting lipid-storage capacity in adipocytes through MitoNEET overexpression curbs tumor growth despite greater adiposity. Collectively, the metabolic interplay between tumor cells and adipocytes induces adipocyte mesenchymal transition and contributes to reconfigure the stroma into a more tumor-friendly microenvironment.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Adipocitos/metabolismo , Animales , Neoplasias de la Mama/patología , Matriz Extracelular/metabolismo , Femenino , Humanos , Neoplasias Mamarias Animales/patología , Microambiente Tumoral
9.
J Clin Invest ; 132(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36066975

RESUMEN

The molecular mechanisms underlying obesity-induced increases in ß cell mass and the resulting ß cell dysfunction need to be elucidated further. Our study revealed that GPR92, expressed in islet macrophages, is modulated by dietary interventions in metabolic tissues. Therefore, we aimed to define the role of GPR92 in islet inflammation by using a high-fat diet-induced (HFD-induced) obese mouse model. GPR92-KO mice exhibited glucose intolerance and reduced insulin levels - despite the enlarged pancreatic islets - as well as increased islet macrophage content and inflammation level compared with WT mice. These results indicate that the lack of GPR92 in islet macrophages can cause ß cell dysfunction, leading to disrupted glucose homeostasis. Alternatively, stimulation with the GPR92 agonist farnesyl pyrophosphate results in the inhibition of HFD-induced islet inflammation and increased insulin secretion in WT mice, but not in GPR92-KO mice. Thus, our study suggests that GPR92 can be a potential target to alleviate ß cell dysfunction via the inhibition of islet inflammation associated with the progression of diabetes.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidad/metabolismo , Islotes Pancreáticos/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , Macrófagos/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL
10.
Nat Metab ; 4(8): 1055-1070, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35982290

RESUMEN

Adult white adipose tissue (WAT) harbors distinct mesenchymal stromal cell subpopulations that differentially affect WAT function and plasticity. Here we unveil the cellular landscape of the perinatal epididymal WAT primordium using single-cell transcriptomics in male mice. We reveal that adipocyte precursor cells and fibro-inflammatory progenitors (FIPs) emerge as functionally distinct PDGFRß+ subpopulations within the epididymal WAT anlagen prior to adipocyte accrual. We further identify important molecular and functional differences between perinatal and adult FIPs, including differences in their pro-inflammatory response, adipogenic capacity and anti-adipogenic behavior. Notably, we find that transient overexpression of Pparg in PDGFRß+ cells only during postnatal days 0.5 to 7.5 in male mice leads to hyperplastic WAT development, durable progenitor cell reprogramming, and protection against pathologic WAT remodeling and glucose intolerance in adult-onset obesity. Thus, factors that alter the adipogenic capacity of perinatal adipose progenitors can have long-lasting effects on progenitor plasticity, tissue expandability and metabolic health into adulthood.


Asunto(s)
Adipogénesis , Tejido Adiposo Blanco , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Femenino , Masculino , Ratones , Obesidad/metabolismo , Embarazo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo
11.
Cell Metab ; 34(5): 783-799.e7, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35447091

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has revealed that adult white adipose tissue (WAT) harbors functionally diverse subpopulations of mesenchymal stromal cells that differentially impact tissue plasticity. To date, the molecular basis of this cellular heterogeneity has not been fully defined. Here, we describe a multilayered omics approach to dissect adipose progenitor cell heterogeneity in three dimensions: progenitor subpopulation, sex, and anatomical localization. We applied state-of-the-art mass spectrometry methods to quantify 4,870 proteins in eight different stromal cell populations from perigonadal and inguinal WAT of male and female mice and acquired transcript expression levels of 15,477 genes using RNA-seq. Our data unveil molecular signatures defining sex differences in preadipocyte differentiation and identify regulatory pathways that functionally distinguish adipose progenitor subpopulations. This multilayered omics analysis, freely accessible at http://preadprofiler.net/, provides unprecedented insights into adipose stromal cell heterogeneity and highlights the benefit of complementary proteomics to support findings from scRNA-seq studies.


Asunto(s)
Adipocitos , Adipogénesis , Adipocitos/metabolismo , Tejido Adiposo , Tejido Adiposo Blanco/metabolismo , Animales , Diferenciación Celular , Femenino , Masculino , Ratones , Células Madre/metabolismo
12.
Nat Metab ; 4(1): 13-14, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35027769
13.
Genes Dev ; 35(21-22): 1461-1474, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34620682

RESUMEN

Energy-storing white adipocytes maintain their identity by suppressing the energy-burning thermogenic gene program of brown and beige adipocytes. Here, we reveal that the protein-protein interaction between the transcriptional coregulator ZFP423 and brown fat determination factor EBF2 is essential for restraining the thermogenic phenotype of white adipose tissue (WAT). Disruption of the ZFP423-EBF2 protein interaction through CRISPR-Cas9 gene editing triggers widespread "browning" of WAT in adult mice. Mechanistically, ZFP423 recruits the NuRD corepressor complex to EBF2-bound thermogenic gene enhancers. Loss of adipocyte Zfp423 induces an EBF2 NuRD-to-BAF coregulator switch and a shift in PPARγ occupancy to thermogenic genes. This shift in PPARγ occupancy increases the antidiabetic efficacy of the PPARγ agonist rosiglitazone in obesity while diminishing the unwanted weight-gaining effect of the drug. These data indicate that ZFP423 controls EBF2 coactivator recruitment and PPARγ occupancy to determine the thermogenic plasticity of adipocytes and highlight the potential of therapeutically targeting transcriptional brakes to induce beige adipocyte biogenesis in obesity.


Asunto(s)
PPAR gamma , Termogénesis , Adipocitos Marrones/metabolismo , Adipocitos Blancos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN , Ratones , PPAR gamma/genética , Termogénesis/genética , Factores de Transcripción
14.
Genes Dev ; 35(19-20): 1333-1338, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34531316

RESUMEN

The full array of cold-responsive cell types within white adipose tissue that drive thermogenic beige adipocyte biogenesis remains undefined. We demonstrate that acute cold challenge elicits striking transcriptomic changes specifically within DPP4+ PDGFRß+ adipocyte precursor cells, including a ß-adrenergic receptor CREB-mediated induction in the expression of the prothermogenic cytokine, Il33 Doxycycline-inducible deletion of Il33 in PDGFRß+ cells at the onset of cold exposure attenuates ILC2 accumulation and beige adipocyte accrual. These studies highlight the multifaceted roles for adipocyte progenitors and the ability of select mesenchymal subpopulations to relay neuronal signals to tissue-resident immune cells in order to regulate tissue plasticity.


Asunto(s)
Adipocitos Beige , Adipocitos Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Adrenérgicos/metabolismo , Frío , Inmunidad Innata , Linfocitos , Termogénesis/genética
15.
Nat Commun ; 12(1): 4829, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376643

RESUMEN

Plasma hyaluronan (HA) increases systemically in type 2 diabetes (T2D) and the HA synthesis inhibitor, 4-Methylumbelliferone, has been proposed to treat the disease. However, HA is also implicated in normal physiology. Therefore, we generated a Hyaluronan Synthase 2 transgenic mouse line, driven by a tet-response element promoter to understand the role of HA in systemic metabolism. To our surprise, adipocyte-specific overproduction of HA leads to smaller adipocytes and protects mice from high-fat-high-sucrose-diet-induced obesity and glucose intolerance. Adipocytes also have more free glycerol that can be released upon beta3 adrenergic stimulation. Improvements in glucose tolerance were not linked to increased plasma HA. Instead, an HA-driven systemic substrate redistribution and adipose tissue-liver crosstalk contributes to the systemic glucose improvements. In summary, we demonstrate an unexpected improvement in glucose metabolism as a consequence of HA overproduction in adipose tissue, which argues against the use of systemic HA synthesis inhibitors to treat obesity and T2D.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Dioxoles/farmacología , Glucosa/metabolismo , Ácido Hialurónico/metabolismo , Lipólisis/efectos de los fármacos , Adipocitos/citología , Tejido Adiposo/citología , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Intolerancia a la Glucosa/metabolismo , Homeostasis , Humanos , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Transgénicos , Obesidad/etiología , Obesidad/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088848

RESUMEN

Homeothermic vertebrates produce heat in cold environments through thermogenesis, in which brown adipose tissue (BAT) increases mitochondrial oxidation along with uncoupling of the electron transport chain and activation of uncoupling protein 1 (UCP1). Although the transcription factors regulating the expression of UCP1 and nutrient oxidation genes have been extensively studied, only a few other proteins essential for BAT function have been identified. We describe the discovery of FAM195A, a BAT-enriched RNA binding protein, which is required for cold-dependent thermogenesis in mice. FAM195A knockout (KO) mice display whitening of BAT and an inability to thermoregulate. In BAT of FAM195A KO mice, enzymes involved in branched-chain amino acid (BCAA) metabolism are down-regulated, impairing their response to cold. Knockdown of FAM195A in brown adipocytes in vitro also impairs expression of leucine oxidation enzymes, revealing FAM195A to be a regulator of BCAA metabolism and a potential target for metabolic disorders.


Asunto(s)
Adipocitos Marrones , Tejido Adiposo Pardo , Frío , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Termogénesis , Aminoácidos de Cadena Ramificada/genética , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Línea Celular Transformada , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados
17.
Elife ; 102021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33904399

RESUMEN

Adiponectin is essential for the regulation of tissue substrate utilization and systemic insulin sensitivity. Clinical studies have suggested a positive association of circulating adiponectin with healthspan and lifespan. However, the direct effects of adiponectin on promoting healthspan and lifespan remain unexplored. Here, we are using an adiponectin null mouse and a transgenic adiponectin overexpression model. We directly assessed the effects of circulating adiponectin on the aging process and found that adiponectin null mice display exacerbated age-related glucose and lipid metabolism disorders. Moreover, adiponectin null mice have a significantly shortened lifespan on both chow and high-fat diet. In contrast, a transgenic mouse model with elevated circulating adiponectin levels has a dramatically improved systemic insulin sensitivity, reduced age-related tissue inflammation and fibrosis, and a prolonged healthspan and median lifespan. These results support a role of adiponectin as an essential regulator for healthspan and lifespan.


Asunto(s)
Adiponectina/fisiología , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Femenino , Glucosa/metabolismo , Homeostasis , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos , Longevidad/fisiología , Masculino , Ratones , Ratones Transgénicos
18.
Cell Stem Cell ; 28(4): 702-717.e8, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33539722

RESUMEN

The adipose tissue stroma is a rich source of molecularly distinct stem and progenitor cell populations with diverse functions in metabolic regulation, adipogenesis, and inflammation. The ontology of these populations and the mechanisms that govern their behaviors in response to stimuli, such as overfeeding, however, are unclear. Here, we show that the developmental fates and functional properties of adipose platelet-derived growth factor receptor beta (PDGFRß)+ progenitor subpopulations are tightly regulated by mitochondrial metabolism. Reducing the mitochondrial ß-oxidative capacity of PDGFRß+ cells via inducible expression of MitoNEET drives a pro-inflammatory phenotype in adipose progenitors and alters lineage commitment. Furthermore, disrupting mitochondrial function in PDGFRß+ cells rapidly induces alterations in immune cell composition in lean mice and impacts expansion of adipose tissue in diet-induced obesity. The adverse effects on adipose tissue remodeling can be reversed by restoring mitochondrial activity in progenitors, suggesting therapeutic potential for targeting energy metabolism in these cells.


Asunto(s)
Adipogénesis , Tejido Adiposo Blanco , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas de Unión a Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Mitocondrias , Células Madre/metabolismo
19.
Cell Stem Cell ; 28(4): 685-701.e7, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33539723

RESUMEN

Adipose precursor cells (APCs) exhibit regional variation in response to obesity, for unclear reasons. Here, we reveal that HIFα-induced PDGFRß signaling within murine white adipose tissue (WAT) PDGFRß+ cells drives inhibitory serine 112 (S112) phosphorylation of PPARγ, the master regulator of adipogenesis. Levels of PPARγ S112 phosphorylation in WAT PDGFRß+ cells are depot dependent, with levels of PPARγ phosphorylation in PDGFRß+ cells inversely correlating with their capacity for adipogenesis upon high-fat-diet feeding. HIFα suppression in PDGFRß+ progenitors promotes subcutaneous and intra-abdominal adipogenesis, healthy WAT remodeling, and improved metabolic health in obesity. These metabolic benefits are mimicked by treatment of obese mice with the PDGFR antagonist Imatinib, which promotes adipocyte hyperplasia and glucose tolerance in a progenitor cell PPARγ-dependent manner. Our studies unveil a mechanism underlying depot-specific responses of APCs to high-fat feeding and highlight the potential for APCs to be targeted pharmacologically to improve metabolic health in obesity.


Asunto(s)
Adipogénesis , Tejido Adiposo , Adipocitos , Tejido Adiposo Blanco , Animales , Dieta Alta en Grasa , Ratones , Ratones Endogámicos C57BL , Obesidad
20.
Nat Metab ; 2(11): 1332-1349, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33139957

RESUMEN

Chronic low-grade white adipose tissue (WAT) inflammation is a hallmark of metabolic syndrome in obesity. Here, we demonstrate that a subpopulation of mouse WAT perivascular (PDGFRß+) cells, termed fibro-inflammatory progenitors (FIPs), activate proinflammatory signalling cascades shortly after the onset of high-fat diet feeding and regulate proinflammatory macrophage accumulation in WAT in a TLR4-dependent manner. FIPs activation in obesity is mediated by the downregulation of zinc-finger protein 423 (ZFP423), identified here as a transcriptional corepressor of NF-κB. ZFP423 suppresses the DNA-binding capacity of the p65 subunit of NF-κB by inducing a p300-to-NuRD coregulator switch. Doxycycline-inducible expression of Zfp423 in PDGFRß+ cells suppresses inflammatory signalling in FIPs and attenuates metabolic inflammation of visceral WAT in obesity. Inducible inactivation of Zfp423 in PDGFRß+ cells increases FIP activity, exacerbates adipose macrophage accrual and promotes WAT dysfunction. These studies implicate perivascular mesenchymal cells as important regulators of chronic adipose-tissue inflammation in obesity and identify ZFP423 as a transcriptional break on NF-κB signalling.


Asunto(s)
Tejido Adiposo Blanco/patología , Macrófagos/patología , Células Madre Mesenquimatosas , Obesidad/patología , Animales , Proteínas de Unión al ADN/metabolismo , Dieta Alta en Grasa , Hipoglucemiantes/farmacología , Insulina/farmacología , Ratones , Ratones Endogámicos C57BL , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...