Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(6): 6305-6315, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371762

RESUMEN

The restoration process of burned and rough skin takes a long time and remains a critical challenge. It can be repaired through a combination of proper care, hydration, and topical therapies. In this study, a novel nanoemulsion was synthesized through the high-energy ultrasonication method. A total of five nanoemulsions (NE1-5) were prepared with varying concentrations of sandalwood oil, a nonionic surfactant (polysorbate 80), and water. Among them, NE3 had a number of appropriate physicochemical characteristics, such as physiological pH (5.58 ± 0.09), refractive index (∼1.34), electrical conductivity (115 ± 0.23 mS cm-1), and transmittance (∼96.5%), which were suitable for skin care applications. The NE3 had a strong surface potential of -18.5 ± 0.15 mV and a hydrodynamic size of 61.99 ± 0.22 nm with a polydispersity index of 0.204. The structural integrity and a distinct droplet size range between 50 and 100 nm were confirmed by transmission electron microscopic analysis. The skin regeneration and restoration abilities of synthesized nanoemulsions were examined by conducting an in vivo study on Sprague-Dawley rats. Exposure to NE3 significantly increased the healing process in burned skin as compared to untreated control and nonemulsified sandalwood oil. In another set of experiments, the NE3-treated rough skin became softer, smoother, and less scaly than all other treatments. Enhanced fatty acids, i.e., palmitic acid, stearic acid, and cholesterol, were recorded in NE3-supplemented burned and rough skin compared to the untreated control. The NE3 had outstanding compatibility with key components of skincare products without any stability issues. Its biocompatibility with the cellular system was established by the negligible generation of reactive oxygen species (ROS) and a lack of genotoxicity. Considering these results, NE3 can be used in cosmetic products such as creams, lotions, and serums, allowing industries to achieve improved product formulations and provide better healthcare benefits to humanity.

2.
Curr Microbiol ; 80(2): 77, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652029

RESUMEN

Rhizobacteria that are helpful to plants can lessen the impacts of salt stress, and they may hold promise for the development of sustainable agriculture in the future. The present study was intended to explicate consortia of salt-tolerant plant-beneficial rhizobacteria for the amelioration of salinity stress in Arabidopsis plants. Inoculation with both the consortia positively influenced the growth of plants as indicated by total chlorophyll content, MDA content, and antioxidant enzyme activities under stressful conditions. Both the multi-trait consortia altered the expression profiles of stress-related genes including CSD1, CAT1, Wrky, Ein, Etr, and ACO. Furthermore, the metabolomic analysis indicated that inoculated plants modulated the metabolic profiles to stimulate physiological and biochemical responses in Arabidopsis plants to mitigate salt stress. Our study affirms that the consortia of salt-tolerant bacterial strains modulate the transcriptional as well as metabolic machinery of plants to protect them from salinity stress. Nevertheless, the findings of this study revealed that consortia are composed of salt-tolerant bacterial strains viz. Bacillus safensis NBRI 12M, B. subtilis NBRI 28B, and B. subtilis NBRI 33N demonstrated significant improvement in Arabidopsis plants under saline stress conditions.


Asunto(s)
Arabidopsis , Bacillus , Tolerancia a la Sal/genética , Arabidopsis/genética , Bacillus/metabolismo , Estrés Salino , Bacterias/metabolismo , Antioxidantes/metabolismo , Estrés Fisiológico
3.
Arch Microbiol ; 204(5): 266, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35437612

RESUMEN

Endophytes can induce the defence responses and modulates physiological attributes in host plants during pathogen attacks. In the present study, 127 bacterial endophytes (BEs) were isolated from different parts of healthy soybean plant. Among them, two BEs (M-2 and M-4) resulted a significant antagonistic property against Macrophomina phaseolina, causes charcoal rot disease in soybean. The antagonistic potential was evaluated through dual culture plate assay, where M-4 expressed higher antifungal activity than M-2 against M. phaseolina. The M-4 produces cell wall degrading enzymes viz. cellulase (145.71 ± 1.34 µgmL-1), chitinase (0.168 ± 0.0009 unitmL-1) and ß,1-3 endoglucanase (162.14 ± 2.5 µgmL-1), which helps in cell wall disintegration of pathogens. Additionally, M-4 also can produce siderophores, indole-3-acetic acid (IAA) (17.03 ± 1.10 µgmL-1) and had a phosphate solubilization potential (19.89 ± 0.26 µgmL-1). Further, GC-MS profiling of M-4 has been carried out to demonstrate the production of lipophilic secondary metabolites which efficiently suppress the M. phaseolina defensive compounds under co-culture conditions. Bio-efficacy study of M-4 strain shown a significant reduction in disease incidence around 60 and 80% in resistant and susceptible varieties of soybean, respectively. The inoculation of M-4 potentially enhances the physiological attributes and triggers various defence responsive enzymes viz. superoxide dismutase (SOD), phenol peroxidase (PPO), peroxidase (PO) and catalase (CAT). The histopathological study also confirmed that M-4 can reduce the persistence of microsclerotia in root and shoot tissue. Conclusively, M-4 revealed as an efficient biocontrol agent that can uses multifaceted measures for charcoal rot disease management, by suppress the M. phaseolina infection and enhance the physiological attributes of soybean.


Asunto(s)
Celulasa , Glycine max , Ascomicetos , Bacillus subtilis , Peroxidasa , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Glycine max/microbiología
4.
Plant Cell Rep ; 40(1): 143-155, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33084964

RESUMEN

KEY MESSAGE: Overexpression of Bacillus amyloliquefaciens SN13-responsive OsNAM gene in Arabidopsis reveals its important role in beneficial plant and plant growth promoting rhizobacteria interaction by conferring stress tolerance and phytohormone modulation. Salinity is one of the major constraints that affect crop development and yield. Plants respond and adapt to salt stress via complex mechanisms that involve morpho-physiological, biochemical, and molecular changes. The expression of numerous genes is known to alter during various abiotic stresses and impart stress tolerance. Recently, some known rhizospheric microbes have also been used to mitigate the effects of abiotic stresses; however, the molecular basis of such interactions remains elusive. Therefore, the present investigation was aimed to elucidate the plant growth-promoting rhizobacteria (PGPR; Bacillus amyloliquefaciens-SN13) -induced crosstalk among salinity and phytohormones in OsNAM-overexpressed Arabidopsis plants. Transgenic plants showed increased germination percentage compared to wild-type (WT) seeds under 100 mM of NaCl. Phenotypic data showed increased root length, rosette diameter, leaf size, and biomass in transgenics than WT plants. Transgenic plants can also better maintain membrane integrity and osmolyte concentration under salinity as compared to WT. Further, gene expression analysis of AP2/ERF, GST, ERD4, and ARF2 genes showed differential expression and their positive modulation in transgenic Arabidopsis exposed to salt stress in the presence of SN13 as compared to uninoculated WT. Modulation in IAA, ABA, and GA content in inoculated plants showed the more pronounced positive effects of SN13 on transgenic plants that supported our findings on Arabidopsis-SN13 interaction. Overall, the study concludes that SN13 positively modulated expression of stress-responsive genes under salinity and alter phytohormones levels in OsNAM-overexpressed plants suggesting its extensive role in cross-talk among salinity and phytohormones in response to PGPR.


Asunto(s)
Arabidopsis/fisiología , Bacillus amyloliquefaciens/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/microbiología , Estrés Fisiológico/genética , Inoculantes Agrícolas , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Estrés Salino/genética , Estrés Salino/fisiología , Estrés Fisiológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...