Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Psychol ; 15: 1377355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629033

RESUMEN

Introduction: Recent research has uncovered a wide prevalence variation of suicidal ideation in university students ranging from 9.7% to 58.3%. India has witnessed a 4.5% increase in suicide rates in the year 2021. The interplay between cognitive reappraisal of a stressful situation, suppression of emotional expression, and coping strategies for suicidal ideation of Indian University students is yet to be explored. We aim to determine whether suicidal ideation would differ across different types of family units, and to predict the extent to which perceived social support and avoidant coping could mediate the relation between emotion regulation processes and suicidal ideation. Methods: Two hundred randomly selected University students (Mean age = 19.9, SD = 1.43) participated. Kruskal-Wallis, Pearson's product-moment correlation, and GLM mediation model were computed. Results and discussion: Lifetime suicidal ideation significantly differed between those who stay alone and those who live in a nuclear family (p < 0.01), and also those who stay in a joint family (p < 0.05). Cognitive reappraisal predicted a reduction in suicidal ideation mediated by perceived social support (B = -0.06, p < 0.05) and avoidant coping (B = -0.07, p < 0.05). Whereas, expressive suppression predicted induced levels of suicidal ideation through perceived social support (B = 0.05, p < 0.05), and avoidant coping (B = 0.06, p < 0.05) as mediators. Conclusion: Though our sample size restricts the generalization, our findings implied the importance of regular psychological consultation regarding the efficacy of the said coping processes in dealing with suicidal ideation.

2.
Virus Res ; 341: 199306, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176525

RESUMEN

The immunopathogenesis of dengue severity is convoluted. The primary objective of the research was to examine the dynamics of cytokine storm and its correlation with disease development in individuals affected by DENV infection. Additionally, the study aimed to discover potential biomarkers that could indicate severe dengue infection and determine the most suitable timeframe for predicting the severity of these biomarkers during the acute stage of dengue infections. We conducted a temporal analysis of the daily viral load and cytokine levels in 60 hospitalized dengue patients until discharge. Our findings reveal a distinct cytokine profile (elevated IL-8, IL-10, IL-6, GM-CSF, MCP-1, IL-13, and IL-4 and decreased IL-12, MIP-1ß) on the third day after symptom onset is predictive of severe dengue in secondary dengue infection. The imbalanced cytokine signature may inform clinical decision-making in treating severe dengue infections.


Asunto(s)
Virus del Dengue , Dengue , Dengue Grave , Humanos , Síndrome de Liberación de Citoquinas , Citocinas , Biomarcadores
3.
Genome Biol ; 24(1): 237, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858234

RESUMEN

Technologies to study localized host-pathogen interactions are urgently needed. Here, we present a spatial transcriptomics approach to simultaneously capture host and pathogen transcriptome-wide spatial gene expression information from human formalin-fixed paraffin-embedded (FFPE) tissue sections at a near single-cell resolution. We demonstrate this methodology in lung samples from COVID-19 patients and validate our spatial detection of SARS-CoV-2 against RNAScope and in situ sequencing. Host-pathogen colocalization analysis identified putative modulators of SARS-CoV-2 infection in human lung cells. Our approach provides new insights into host response to pathogen infection through the simultaneous, unbiased detection of two transcriptomes in FFPE samples.


Asunto(s)
COVID-19 , Transcriptoma , Humanos , Fijación del Tejido , Formaldehído , SARS-CoV-2
4.
Proc Natl Acad Sci U S A ; 120(37): e2304722120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669378

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) caused by CCHF virus (CCHFV) is one of the epidemic-prone diseases prioritized by the World Health Organisation as public health emergency with an urgent need for accelerated research. The trajectory of host response against CCHFV is multifarious and remains unknown. Here, we reported the temporal spectrum of pathogenesis following the CCHFV infection using genome-wide blood transcriptomics analysis followed by advanced systems biology analysis, temporal immune-pathogenic alterations, and context-specific progressive and postinfection genome-scale metabolic models (GSMM) on samples collected during the acute (T0), early convalescent (T1), and convalescent-phase (T2). The interplay between the retinoic acid-inducible gene-I-like/nucleotide-binding oligomerization domain-like receptor and tumor necrosis factor signaling governed the trajectory of antiviral immune responses. The rearrangement of intracellular metabolic fluxes toward the amino acid metabolism and metabolic shift toward oxidative phosphorylation and fatty acid oxidation during acute CCHFV infection determine the pathogenicity. The upregulation of the tricarboxylic acid cycle during CCHFV infection, compared to the noninfected healthy control and between the severity groups, indicated an increased energy demand and cellular stress. The upregulation of glycolysis and pyruvate metabolism potentiated energy generation through alternative pathways associated with the severity of the infection. The downregulation of metabolic processes at the convalescent phase identified by blood cell transcriptomics and single-cell type proteomics of five immune cells (CD4+ and CD8+ T cells, CD14+ monocytes, B cells, and NK cells) potentially leads to metabolic rewiring through the recovery due to hyperactivity during the acute phase leading to post-viral fatigue syndrome.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Humanos , Linfocitos T CD8-positivos , Regulación hacia Arriba , Metaboloma
6.
Front Immunol ; 13: 1002823, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439101

RESUMEN

ZC3H11A is a cellular protein associated with the transcription export (TREX) complex that is induced during heat-shock. Several nuclear-replicating viruses exploit the mRNA export mechanism of ZC3H11A protein for their efficient replication. Here we show that ZC3H11A protein plays a role in regulation of NF-κB signal transduction. Depletion of ZC3H11A resulted in enhanced NF-κB mediated signaling, with upregulation of numerous innate immune related mRNAs, including IL-6 and a large group of interferon-stimulated genes. IL-6 upregulation in the absence of the ZC3H11A protein correlated with an increased NF-κB transcription factor binding to the IL-6 promoter and decreased IL-6 mRNA decay. The enhanced NF-κB signaling pathway in ZC3H11A deficient cells correlated with a defect in IκBα inhibitory mRNA and protein accumulation. Upon ZC3H11A depletion The IκBα mRNA was retained in the cell nucleus resulting in failure to maintain normal levels of the cytoplasmic IκBα mRNA and protein that is essential for its inhibitory feedback loop on NF-κB activity. These findings indicate towards a previously unknown mechanism of ZC3H11A in regulating the NF-κB pathway at the level of IkBα mRNA export.


Asunto(s)
Proteínas I-kappa B , FN-kappa B , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Interleucina-6 , Transducción de Señal , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Cell Syst ; 13(8): 665-681.e4, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35933992

RESUMEN

The clinical outcome and disease severity in coronavirus disease 2019 (COVID-19) are heterogeneous, and the progression or fatality of the disease cannot be explained by a single factor like age or comorbidities. In this study, we used system-wide network-based system biology analysis using whole blood RNA sequencing, immunophenotyping by flow cytometry, plasma metabolomics, and single-cell-type metabolomics of monocytes to identify the potential determinants of COVID-19 severity at personalized and group levels. Digital cell quantification and immunophenotyping of the mononuclear phagocytes indicated a substantial role in coordinating the immune cells that mediate COVID-19 severity. Stratum-specific and personalized genome-scale metabolic modeling indicated monocarboxylate transporter family genes (e.g., SLC16A6), nucleoside transporter genes (e.g., SLC29A1), and metabolites such as α-ketoglutarate, succinate, malate, and butyrate could play a crucial role in COVID-19 severity. Metabolic perturbations targeting the central metabolic pathway (TCA cycle) can be an alternate treatment strategy in severe COVID-19.


Asunto(s)
COVID-19 , Humanos , Redes y Vías Metabólicas , Metabolómica
8.
Elife ; 112022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35437144

RESUMEN

The pathogenesis and host-viral interactions of the Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) are convoluted and not well evaluated. Application of the multi-omics system biology approaches, including biological network analysis in elucidating the complex host-viral response, interrogates the viral pathogenesis. The present study aimed to fingerprint the system-level alterations during acute CCHFV-infection and the cellular immune responses during productive CCHFV-replication in vitro. We used system-wide network-based system biology analysis of peripheral blood mononuclear cells (PBMCs) from a longitudinal cohort of CCHF patients during the acute phase of infection and after one year of recovery (convalescent phase) followed by untargeted quantitative proteomics analysis of the most permissive CCHFV-infected Huh7 and SW13 cells. In the RNAseq analysis of the PBMCs, comparing the acute and convalescent-phase, we observed system-level host's metabolic reprogramming towards central carbon and energy metabolism (CCEM) with distinct upregulation of oxidative phosphorylation (OXPHOS) during CCHFV-infection. Upon application of network-based system biology methods, negative coordination of the biological signaling systems like FOXO/Notch axis and Akt/mTOR/HIF-1 signaling with metabolic pathways during CCHFV-infection were observed. The temporal quantitative proteomics in Huh7 showed a dynamic change in the CCEM over time and concordant with the cross-sectional proteomics in SW13 cells. By blocking the two key CCEM pathways, glycolysis and glutaminolysis, viral replication was inhibited in vitro. Activation of key interferon stimulating genes during infection suggested the role of type I and II interferon-mediated antiviral mechanisms both at the system level and during progressive replication.


Crimean-Congo hemorrhagic fever (CCHF) is an emerging disease that is increasingly spreading to new populations. The condition is now endemic in almost 30 countries in sub-Saharan Africa, South-Eastern Europe, the Middle East and Central Asia. CCHF is caused by a tick-borne virus and can cause uncontrolled bleeding. It has a mortality rate of up to 40%, and there are currently no vaccines or effective treatments available. All viruses depend entirely on their hosts for reproduction, and they achieve this through hijacking the molecular machinery of the cells they infect. However, little is known about how the CCHF virus does this and how the cells respond. To understand more about the relationship between the cell's metabolism and viral replication, Neogi, Elaldi et al. studied immune cells taken from patients during an infection and one year later. The gene activity of the cells showed that the virus prefers to hijack processes known as central carbon and energy metabolism. These are the main regulator of the cellular energy supply and the production of essential chemicals. By using cancer drugs to block these key pathways, Neogi, Elaldi et al. could reduce the viral reproduction in laboratory cells. These findings provide a clearer understanding of how the CCHF virus replicates inside human cells. By interfering with these processes, researchers could develop new antiviral strategies to treat the disease. One of the cancer drugs tested in cells, 2-DG, has been approved for emergency use against COVID-19 in some countries. Neogi, Elaldi et al. are now studying this further in animals with the hope of reaching clinical trials in the future.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Antivirales/uso terapéutico , Estudios Transversales , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Humanos , Interferones , Leucocitos Mononucleares
9.
Commun Biol ; 5(1): 357, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418589

RESUMEN

HIV-1 infection induces a chronic inflammatory environment not restored by suppressive antiretroviral therapy (ART). As of today, the effect of viral suppression and immune reconstitution in people living with HIV-1 (PLWH) has been well described but not completely understood. Herein, we show how PLWH who naturally control the virus (PLWHEC) have a reduced proportion of CD4+CCR6+ and CD8+CCR6+ cells compared to PLWH on suppressive ART (PLWHART) and HIV-1 negative controls (HC). Expression of CCR2 was reduced on both CD4+, CD8+ and classical monocytes in PLWHEC compared to PLWHART and HC. Longer suppressive therapy, measured in the same patients, decreased number of cells expressing CCR2 on all monocytic cell populations while expression on CD8+ T cells increased. Furthermore, the CD4+CCR6+/CCR6- cells exhibited a unique proteomic profile with a modulated energy metabolism in PLWHEC compared to PLWHART independent of CCR6 status. The CD4+CCR6+ cells also showed an enrichment in proteins involved in apoptosis and p53 signalling in PLWHEC compared to PLWHART, indicative of increased sensitivity towards cell death mechanisms. Collectively, this data shows how PLWHEC have a unique chemokine receptor profile that may aid in facilitating natural control of HIV-1 infection.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Controladores de Élite , Infecciones por VIH/tratamiento farmacológico , Humanos , Proteómica , Receptores CCR6/metabolismo
10.
Virology ; 569: 13-28, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35219218

RESUMEN

Emerging mutations in the SARS-CoV-2 genome pose a challenge for vaccine development and antiviral therapy. The antiviral efficacy of Azadirachta indica bark extract (NBE) was assessed against SARS-CoV-2 and m-CoV-RSA59 infection. Effects of in vivo intranasal or oral NBE administration on viral load, inflammatory response, and histopathological changes were assessed in m-CoV-RSA59-infection. NBE administered inhibits SARS-CoV-2 and m-CoV-RSA59 infection and replication in vitro, reducing Envelope and Nucleocapsid gene expression. NBE ameliorates neuroinflammation and hepatitis in vivo by restricting viral replication and spread. Isolated fractions of NBE enriched in Nimbin isomers shows potent inhibition of m-CoV-RSA59 infection in vitro. In silico studies revealed that NBE could target Spike and RdRp of m-CoV and SARS-CoV-2 with high affinity. NBE has a triterpenoids origin that may allow them to competitively target panoply of viral proteins to inhibit mouse and different strains of human coronavirus infections, suggesting its potential as an antiviral against pan-ß-Coronaviruses.


Asunto(s)
Azadirachta , Tratamiento Farmacológico de COVID-19 , Animales , Antivirales/farmacología , Limoninas , Ratones , Corteza de la Planta , Extractos Vegetales/farmacología , SARS-CoV-2 , Replicación Viral
11.
Commun Biol ; 5(1): 27, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017663

RESUMEN

Despite successful combination antiretroviral therapy (cART), persistent low-grade immune activation together with inflammation and toxic antiretroviral drugs can lead to long-lasting metabolic flexibility and adaptation in people living with HIV (PLWH). Our study investigated alterations in the plasma metabolic profiles by comparing PLWH on long-term cART(>5 years) and matched HIV-negative controls (HC) in two cohorts from low- and middle-income countries (LMIC), Cameroon, and India, respectively, to understand the system-level dysregulation in HIV-infection. Using untargeted and targeted LC-MS/MS-based metabolic profiling and applying advanced system biology methods, an altered amino acid metabolism, more specifically to glutaminolysis in PLWH than HC were reported. A significantly lower level of neurosteroids was observed in both cohorts and could potentiate neurological impairments in PLWH. Further, modulation of cellular glutaminolysis promoted increased cell death and latency reversal in pre-monocytic HIV-1 latent cell model U1, which may be essential for the clearance of the inducible reservoir in HIV-integrated cells.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Glutamina/metabolismo , Infecciones por VIH , Metaboloma , Adulto , Células Cultivadas , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Femenino , Glucólisis/genética , Glucólisis/fisiología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Infecciones por VIH/fisiopatología , Humanos , Masculino , Metaboloma/genética , Metaboloma/fisiología , Metabolómica , Persona de Mediana Edad , Biología de Sistemas
12.
iScience ; 25(1): 103607, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35005552

RESUMEN

Natural control of HIV-1 is a characteristic of <1% of HIV-1-infected individuals, so called elite controllers (EC). In this study, we sought to identify signaling pathways associated with the EC phenotype using integrative proteo-transcriptomic analysis and immunophenotyping. We found HIF signaling and glycolysis as specific traits of the EC phenotype together with dysregulation of HIF target gene transcription. A higher proportion of HIF-1α and HIF-1ß in the nuclei of CD4+ and CD8+ T cells in the male EC were observed, indicating a potential increased activation of the HIF signaling pathway. Furthermore, intracellular glucose levels were elevated in EC even as the surface expression of the metabolite transporters Glut1 and MCT-1 were decreased on lymphocytes indicative of unique metabolic uptake and flux profile. Combined, our data show that glycolytic modulation and altered HIF signaling is a unique feature of the male EC phenotype that may contribute to natural control of HIV-1.

13.
Mol Cell Proteomics ; 20: 100159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34619366

RESUMEN

Viruses hijack host metabolic pathways for their replicative advantage. In this study, using patient-derived multiomics data and in vitro infection assays, we aimed to understand the role of key metabolic pathways that can regulate severe acute respiratory syndrome coronavirus-2 reproduction and their association with disease severity. We used multiomics platforms (targeted and untargeted proteomics and untargeted metabolomics) on patient samples and cell-line models along with immune phenotyping of metabolite transporters in patient blood cells to understand viral-induced metabolic modulations. We also modulated key metabolic pathways that were identified using multiomics data to regulate the viral reproduction in vitro. Coronavirus disease 2019 disease severity was characterized by increased plasma glucose and mannose levels. Immune phenotyping identified altered expression patterns of carbohydrate transporter, glucose transporter 1, in CD8+ T cells, intermediate and nonclassical monocytes, and amino acid transporter, xCT, in classical, intermediate, and nonclassical monocytes. In in vitro lung epithelial cell (Calu-3) infection model, we found that glycolysis and glutaminolysis are essential for virus replication, and blocking these metabolic pathways caused significant reduction in virus production. Taken together, we therefore hypothesized that severe acute respiratory syndrome coronavirus-2 utilizes and rewires pathways governing central carbon metabolism leading to the efflux of toxic metabolites and associated with disease severity. Thus, the host metabolic perturbation could be an attractive strategy to limit the viral replication and disease severity.


Asunto(s)
Proteínas Sanguíneas/metabolismo , COVID-19/etiología , SARS-CoV-2/fisiología , Adulto , Anciano , Sistema de Transporte de Aminoácidos y+/sangre , Aminoácidos/sangre , Biomarcadores/sangre , Proteínas Sanguíneas/análisis , COVID-19/metabolismo , COVID-19/virología , Carbohidratos/sangre , Estudios de Casos y Controles , Transportador de Glucosa de Tipo 1/sangre , Hospitalización , Humanos , Inmunofenotipificación , Manosa/sangre , Lectina de Unión a Manosa/sangre , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Replicación Viral
14.
PLoS Pathog ; 17(9): e1009954, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34543352

RESUMEN

Topoisomerases are essential for the replication of herpesviruses but the mechanisms by which the viruses hijack the cellular enzymes are largely unknown. We found that topoisomerase-II (TOP2) is a substrate of the Epstein-Barr virus (EBV) ubiquitin deconjugase BPLF1. BPLF1 co-immunoprecipitated and deubiquitinated TOP2, and stabilized SUMOylated TOP2 trapped in cleavage complexes (TOP2ccs), which halted the DNA damage response to TOP2-induced double strand DNA breaks and promoted cell survival. Induction of the productive virus cycle in epithelial and lymphoid cell lines carrying recombinant EBV encoding the active enzyme was accompanied by TOP2 deubiquitination, accumulation of TOP2ccs and resistance to Etoposide toxicity. The protective effect of BPLF1 was dependent on the expression of tyrosyl-DNA phosphodiesterase 2 (TDP2) that releases DNA-trapped TOP2 and promotes error-free DNA repair. These findings highlight a previously unrecognized function of BPLF1 in supporting a non-proteolytic pathway for TOP2ccs debulking that favors cell survival and virus production.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Células HEK293 , Células HeLa , Humanos
15.
Heliyon ; 7(5): e07134, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34056141

RESUMEN

Most COVID-19 victims are old and die from unrelated causes. Here we present twelve complete autopsies, including two rapid autopsies of young patients where the cause of death was COVID-19 ARDS. The main virus induced pathology was in the lung parenchyma and not in the airways. Most coagulation events occurred in the intra-alveolar and not in the intra-vascular space and the few thrombi were mainly composed of aggregated thrombocytes. The dominant inflammatory response was the massive accumulation of CD163 + macrophages and the disappearance of T killer, NK and B-cells. The virus was replicating in the pneumocytes and macrophages but not in bronchial epithelium, endothelium, pericytes or stromal cells. The lung consolidations were produced by a massive regenerative response, stromal and epithelial proliferation and neovascularization. We suggest that thrombocyte aggregation inhibition, angiogenesis inhibition and general proliferation inhibition may have a roll in the treatment of advanced COVID-19 ARDS.

16.
Cell Death Discov ; 7(1): 114, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006825

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) has caused a global health emergency. A key feature of COVID-19 is dysregulated interferon-response. Type-I interferon (IFN-I) is one of the earliest antiviral innate immune responses following viral infection and plays a significant role in the pathogenesis of SARS-CoV-2. In this study, using a proteomics-based approach, we identified that SARS-CoV-2 infection induces delayed and dysregulated IFN-I signaling in Huh7 cells. We demonstrate that SARS-CoV-2 is able to inhibit RIG-I mediated IFN-ß production. Our results also confirm the recent findings that IFN-I pretreatment is able to reduce the susceptibility of Huh7 cells to SARS-CoV-2, but not post-treatment. Moreover, senescent Huh7 cells, in spite of showing accentuated IFN-I response were more susceptible to SARS-CoV-2 infection, and the virus effectively inhibited IFIT1 in these cells. Finally, proteomic comparison between SARS-CoV-2, SARS-CoV, and MERS-CoV revealed a distinct differential regulatory signature of interferon-related proteins emphasizing that therapeutic strategies based on observations in SARS-CoV and MERS-CoV should be used with caution. Our findings provide a better understanding of SARS-CoV-2 regulation of cellular interferon response and a perspective on its use as a treatment. Investigation of different interferon-stimulated genes and their role in the inhibition of SARS-CoV-2 pathogenesis may direct novel antiviral strategies.

17.
iScience ; 24(5): 102420, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33898942

RESUMEN

The commonly used laboratory cell lines are the first line of experimental models to study the pathogenicity and performing antiviral assays for emerging viruses. Here, we assessed the tropism and cytopathogenicity of the first Swedish isolate of SARS-CoV-2 in six different human cell lines, compared their growth characteristics, and performed quantitative proteomics for the susceptible cell lines. Overall, Calu-3, Caco2, Huh7, and 293FT cell lines showed a high-to-moderate level of susceptibility to SARS-CoV-2. In Caco2 cells, the virus can achieve high titers in the absence of any prominent cytopathic effect. The protein abundance profile during SARS-CoV-2 infection revealed cell-type-specific regulation of cellular pathways. Type-I interferon signaling was identified as the common dysregulated cellular response in Caco2, Calu-3, and Huh7 cells. Together, our data show cell-type specific variability for cytopathogenicity, susceptibility, and cellular response to SARS-CoV-2 and provide important clues to guide future studies.

18.
BMC Infect Dis ; 21(1): 214, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632139

RESUMEN

BACKGROUND: HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients on the South African national second-line cART regimen receiving bPIs. METHODS: During 2017 and 2018, 67 patient samples were sequenced using high-throughput sequencing (HTS), of which 56 samples were included in the final analysis because the patient's treatment regimen was available at the time of sampling. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database. RESULTS: Statistically significantly higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to non-nucleoside reverse transcriptase inhibitors (9%; 5/56; p = 0.042) and integrase inhibitor RAM (4%; 2/56; p = 0.002). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n = 13) in protease and K65R (n = 5), K103N (n = 7) and M184V (n = 5) in reverse transcriptase. CONCLUSIONS: HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in < 20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.


Asunto(s)
Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Proteasa del VIH/uso terapéutico , VIH-1/efectos de los fármacos , Cuasiespecies/efectos de los fármacos , Antirretrovirales/uso terapéutico , Farmacorresistencia Viral/efectos de los fármacos , Genes pol/genética , Genotipo , Infecciones por VIH/virología , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Mutación , Cuasiespecies/genética , ARN Viral/genética , Sudáfrica/epidemiología
19.
Autophagy ; 17(11): 3461-3474, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33509017

RESUMEN

Macroautophagy/autophagy plays an important role in the control of viral infections and viruses have evolved multiple strategies to interfere with autophagy to avoid destruction and promote their own replication and spread. Here we report that the deubiquitinase encoded in the N-terminal domain of the Epstein-Barr virus (EBV) large tegument protein, BPLF1, regulates selective autophagy. Mass spectrometry analysis identified several vesicular traffic and autophagy related proteins as BPLF1 interactors and potential substrates, suggesting that the viral protein targets this cellular defense during productive infection. Direct binding of BPLF1 to the autophagy receptor SQSTM1/p62 (sequestosome 1) was confirmed by co-immunoprecipitation of transfected BPLF1 and by in vitro affinity isolation of bacterially expressed proteins. Expression of the catalytically active BPLF1 was associated with decreased SQSTM1/p62 ubiquitination and failure to recruit LC3 to SQSTM1/p62-positive aggregates. Selective autophagy was inhibited as illustrated by the accumulation of large protein aggregates in BPLF1-positive cells co-transfected with an aggregate-prone HTT (huntingtin)-Q109 construct, and by a slower autophagy-dependent clearance of protein aggregates upon transfection of BPLF1 in cells expressing a tetracycline-regulated HTT-Q103. The inhibition of aggregate clearance was restored by overexpression of a SQSTM1/p62[E409A,K420R] mutant that does not require ubiquitination of Lys420 for cargo loading. These findings highlight a previously unrecognized role of the viral deubiquitinase in the regulation of selective autophagy, which may promote infection and the production of infectious virus.Abbreviations: BPLF1, BamH1 fragment left open reading frame-1; EBV, Epstein-Barr virus; GFP, green fluorescent protein; HTT, huntingtin; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; PB1, Phox and Bem1 domain; PE, phosphatidylethanolamine; SQSTM1/p62, sequestosome 1; UBA, ubiquitin-associated domain.


Asunto(s)
Autofagia/fisiología , Enzimas Desubicuitinizantes/fisiología , Herpesvirus Humano 4/fisiología , Proteína Sequestosoma-1/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Autofagia/genética , Enzimas Desubicuitinizantes/genética , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Células HeLa , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Macroautofagia/genética , Macroautofagia/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Agregado de Proteínas/genética , Agregado de Proteínas/fisiología , Proteína Sequestosoma-1/genética , Transfección , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales/genética
20.
Comput Struct Biotechnol J ; 18: 3734-3744, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33200027

RESUMEN

The emergence and continued spread of SARS-CoV-2 have resulted in a public health emergency across the globe. The lack of knowledge on the precise mechanism of viral pathogenesis is impeding medical intervention. In this study, we have taken both in silico and in vitro experimental approaches to unravel the mechanism of viral pathogenesis associated with complement and coagulation pathways. Based on the structural similarities of viral and host proteins, we initially generated a protein-protein interactome profile. Further computational analysis combined with Gene Ontology (GO) analysis and KEGG pathway analysis predicted key annotated pathways associated with viral pathogenesis. These include MAPK signaling, complement, and coagulation cascades, endocytosis, PD-L1 expression, PD-1 checkpoint pathway in cancer and C-type lectin receptor signaling pathways. Degree centrality analysis pinned down to MAPK1, MAPK3, AKT1, and SRC are crucial drivers of signaling pathways and often overlap with the associated pathways. Most strikingly, the complement and coagulation cascade and platelet activation pathways are interconnected, presumably directing thrombotic activity observed in severe or critical cases of COVID-19. This is complemented by in vitro studies of Huh7 cell infection and analysis of the transcriptome and proteomic profile of gene candidates during viral infection. The most known candidates associated with complement and coagulation cascade signaling by KEGG pathway analysis showed significant up-regulated fold change during viral infection. Collectively both in silico and in vitro studies suggest complement and coagulation cascade signaling are a mechanism for intravascular coagulation, thrombotic changes, and associated complications in severe COVID-19 patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...