Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 231(Pt 3): 116316, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37270084

RESUMEN

Nanomaterials have been widely used in diverse fields of research such as engineering, biomedical science, energy, and environment. At present, chemical and physical methods are the main methods for large-scale synthesis of nanomaterials, but these methods have adverse effects on the environment, and health issues, consume more energy, and are expensive. The green synthesis of nanoparticles is a promising and environmentally friendly approach to producing materials with unique properties. Natural reagents such as herbs, bacteria, fungi, and agricultural waste are used in the green synthesis of nanomaterials instead of hazardous chemicals and reduce the carbon footprint of the synthesis process. Green synthesis of nanomaterials is highly beneficial compared to traditional methods due to its low cost, negligible pollution level, and safety for the environment and human health. Nanoparticles possess enhanced thermal and electrical conductivity, catalytic activity, and biocompatibility, making them highly attractive for a range of applications, including catalysis, energy storage, optics, biological labeling, and cancer therapy. This review article provides a comprehensive overview of recent advancements in the green synthesis routes of different types of nanomaterials, including metal oxide-based, inert metal-based, carbon-based, and composite-based nanoparticles. Moreover, we discuss the various applications of nanoparticles, emphasizing their potential to revolutionize fields such as medicine, electronics energy, and the environment. The factors affecting the green synthesis of nanomaterials, and their limitations are also pointed out to decide the direction of this research field, Overall, this paper highlights the importance of green synthesis in promoting sustainable development in various industries.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Humanos , Nanopartículas del Metal/química , Tecnología Química Verde/métodos , Óxidos , Hongos
2.
Mater Sci Eng C Mater Biol Appl ; 92: 957-968, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184825

RESUMEN

Herein, we report strain- and damage-sensing performance of biocompatible smart CNT/UHMWPE nanocomposites for the first time. CNT/UHMWPE nanocomposites are fabricated by solution mixing followed by compression molding. The surface morphology, microstructural properties, thermal decomposition and stability, glass transition temperature and thermal conductivity of the nanocomposites are characterized. The degree of crystallinity of CNT/UHMWPE nanocomposites is found to have a maximum value of 52% at 0.1 wt% CNT loading. The degree of crystallinity influences the mechanical properties of the CNT/UHMWPE nanocomposites. The electrical percolation threshold is achieved at 0.05 wt% of CNT and it follows a two dimensional conductive network according to percolation theory. The piezoresistive response of CNT/UHMWPE nanocomposites is demonstrated with a gauge factor of ~2.0 in linear elastic regime and that in the range of 3.8-96.0 in inelastic regimes for 0.05 wt% of CNT loading. A simple theoretical model is also developed to predict the resistivity evolution in both elastic and inelastic regimes. High sensitivity of CNT/UHMWPE nanocomposites coupled with linear piezoresistive response up to 100% strain demonstrates their potential for application in artificial implants as a self-sensing material.


Asunto(s)
Nanocompuestos/química , Nanotubos de Carbono/química , Materiales Biocompatibles/química , Ensayo de Materiales , Polietilenos/química , Propiedades de Superficie , Resistencia a la Tracción
3.
Biosens Bioelectron ; 90: 224-229, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27907873

RESUMEN

Quinolinic acid (QA) is a metabolite of tryptophan degradation obtained through kynurenine pathway, produced naturally in the mammalian brain as well as in the human cerebrospinal fluid. The presence of QA ~10-40µM is a clear indicator of many neurological disorders as well as deficiency of vitamin B6 in human being. In the present work; rapid, sensitive and cost-effective bio-electrodes were prepared to detect the trace amount of endogenous neurotoxin (QA). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies were carried out to measure the electrochemical response of the fabricated bio-electrodes as a function of QA concentrations. These devices were found to exhibit desirable sensitivity of ~7.86mAµM-1cm-2 in wide concentration range (6.5µM-65mM). The lower detection limit of this device is as low as 6.5µM and it has excellent storage stability of ~30 days. The capability of the proposed electrochemical bio-sensor was also checked to detect QA in the real samples (human serum). These results reveal that the use of this electrochemical bio-sensor may provide a potential platform for the detection of QA in the real samples for the prior detection of many diseases.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Ácido Quinolínico/sangre , Electrodos , Enzimas Inmovilizadas/química , Diseño de Equipo , Grafito/química , Humanos , Límite de Detección , Neurotoxinas/análisis , Neurotoxinas/sangre , Oxidación-Reducción , Pentosiltransferasa/química , Ácido Quinolínico/análisis
4.
ACS Appl Mater Interfaces ; 7(35): 19831-42, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26287816

RESUMEN

The electromagnetic interference (EMI) shielding of reduced graphene oxide (MRG), B-doped MRG (B-MRG), N-doped MRG (N-MRG), and B-N co-doped MRG (B-N-MRG) have been studied in the Ku-band frequency range (12.8-18 GHz). We have developed a green, fast, and cost-effective microwave assisted route for synthesis of doped MRG. B-N-MRG shows high electrical conductivity in comparison to MRG, B-MRG and N-MRG, which results better electromagnetic interference (EMI) shielding ability. The co-doping of B and N significantly enhances the electrical conductivity of MRG from 21.4 to 124.4 Sm(-1) because N introduces electrons and B provides holes in the system and may form a nanojunction inside the material. Their temperature-dependent electrical conductivity follows 2D-variable range hopping (2D-VRH) and Efros-Shklovskii-VRH (ES-VRH) conduction model in a low temperature range (T<50 K). The spatial configuration of MRG after doping of B and N enhances the space charge polarization, natural resonance, dielectric polarization, and trapping of EM waves by internal reflection leading to a high EMI shielding of -42 dB (∼99.99% attenuation) compared to undoped MRG (-28 dB) at a critical thickness of 1.2 mm. Results suggest that the B-N-MRG has great potential as a candidate for a new type of EMI shielding material useful in aircraft, defense industries, communication systems, and stealth technology.

5.
Nanoscale ; 6(2): 842-51, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24264356

RESUMEN

The multiphase approach was adapted to enhance the electromagnetic interference (EMI) shielding effectiveness (SE) of polyaniline (PANI) based nanocomposites. The natural graphite flakes (NGF) incorporated modified PANI was used for the development of multi-walled carbon nanotubes (MWCNTs) based nanocomposites. In PANINGF-MWCNTs composites, multilayer graphene was synthesized in situ by ball milling. The resultant PANINGF-MWCNTs nanocomposites were characterized by different techniques. It was revealed from the transmission electron microscope (TEM) observation that in situ derived multilayer graphene acts as a bridge between PANI and MWCNTs, and plays a significant role for improving the properties of multiphase nanocomposites. It was observed that EMI-SE increases with increasing the MWCNTs content from 1 to 10 wt% in the multiphase nanocomposites. The maximum value of total EMI-SE was -98 dB of nanocomposite with 10 wt% of MWCNTs content. The high value of EMI-SE is dominated by the absorption phenomenon which is due to the collective effect of increase in space charge polarization and decrease in carrier mobility. The decrease in carrier mobility has a positive effect on the shore hardness value due to the strong interaction between the reinforcing constituent in multiphase nanocomposites. As a consequence, shore hardness increases from 56 to 91 at 10 wt% of MWCNTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...