Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37511015

RESUMEN

Liver injury can be acute or chronic, resulting from a variety of factors, including viral hepatitis, drug overdose, idiosyncratic drug reaction, or toxins, while the progression of pathogenesis in the liver rises due to the involvement of numerous cytokines and growth factor mediators. Thus, the identification of more effective biomarker-based active phytochemicals isolated from medicinal plants is a promising strategy to protect against CCl4-induced liver injury. Vitis vinifera L. (VE) and Centella asiatica (CE) are well-known medicinal plants that possess anti-inflammatory and antioxidant properties. However, synergism between the two has not previously been studied. Here, we investigated the synergistic effects of a V. vinifera L. (VE) leaf, C. asiatica (CE) extract combination (VCEC) against CCl4-induced liver injury. Acute liver injury was induced by a single intraperitoneal administration of CCl4 (1 mL/kg). VCEC was administered orally for three consecutive days at various concentrations (100 and 200 mg/kg) prior to CCl4 injection. The extent of liver injury and the protective effects of VCEC were evaluated by biochemical analysis and histopathological studies. Oxidative stress was evaluated by measuring malondialdehyde (MDA) and glutathione (GSH) levels and Western blotting. VCEC treatment significantly reduced serum transaminase levels (AST and ALT), tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS). CCl4- induced apoptosis was inhibited by VCEC treatment by reducing cleaved caspase-3 and Bcl2-associated X protein (Bax). VCEC-treated mice significantly restored cytochrome P450 2E1, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) expression in CCl4-treated mice. In addition, VCEC downregulated overexpression of proinflammatory cytokines and hepatic nuclear factor kappa B (NF-κB) and inhibited CCl4-mediated apoptosis. Collectively, VCEC exhibited synergistic protective effects against liver injury through its antioxidant, anti-inflammatory, and antiapoptotic ability against oxidative stress, inflammation, and apoptosis. Therefore, VCEC appears promising as a potential therapeutic agent for CCl4-induced acute liver injury in mice.


Asunto(s)
Centella , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Vitis , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Vitis/metabolismo , Centella/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Citocinas/metabolismo , Antiinflamatorios/farmacología , Glutatión/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Tetracloruro de Carbono/farmacología
2.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232707

RESUMEN

Hepatic fibrosis is a form of irregular wound-healing response with acute and chronic injury triggered by the deposition of excessive extracellular matrix. Epithelial-mesenchymal transition (EMT) is a dynamic process that plays a crucial role in the fibrogenic response and pathogenesis of liver fibrosis. In the present study, we postulated a protective role of 3,3'-diindolylmethane (DIM) against TGF-ß1 mediated epithelial-mesenchymal transition (EMT) in vitro and carbon tetrachloride (CCl4)-induced liver fibrosis in mice. TGF-ß1-induced AML-12 hepatocyte injury was evaluated by monitoring cell morphology, measuring reactive oxygen species (ROS) and mitochondrial membrane potential, and quantifying apoptosis, inflammatory, and EMT-related proteins. Furthermore, CCl4-induced liver fibrosis in mice was evaluated by performing liver function tests, including serum ALT and AST, total bilirubin, and albumin to assess liver injury and by performing H&E and Sirius red staining to determine the degree of liver fibrosis. Immunoblotting was performed to determine the expression levels of inflammation, apoptosis, and Nrf2/HO-1 signaling-related proteins. DIM treatment significantly restored TGF-ß1-induced morphological changes, inhibited the expression of mesenchymal markers by activating E-cadherin, decreased mitochondrial membrane potential, reduced ROS intensity, and upregulated levels of Nrf2-responsive antioxidant genes. In the mouse model of CCl4-induced liver fibrosis, DIM remarkably attenuated liver injury and liver fibrosis, as reflected by the reduced ALT and AST parameters with increased serum Alb activity and fewer lesions in H&E staining. It also mitigated the fibrosis area in Sirius red and Masson staining. Taken together, our results suggest a possible molecular mechanism of DIM by suppressing TGF-ß1-induced EMT in mouse hepatocytes and CCl4-induced liver fibrosis in mice.


Asunto(s)
Tetracloruro de Carbono , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Albúminas/metabolismo , Antioxidantes/farmacología , Bilirrubina/metabolismo , Cadherinas/metabolismo , Tetracloruro de Carbono/toxicidad , Transición Epitelial-Mesenquimal , Hepatocitos/metabolismo , Indoles , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...