Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(29): eabl4733, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35857845

RESUMEN

The motor protein myosin-15 is necessary for the development and maintenance of mechanosensory stereocilia, and mutations in myosin-15 cause hereditary deafness. In addition to transporting actin regulatory machinery to stereocilia tips, myosin-15 directly nucleates actin filament ("F-actin") assembly, which is disrupted by a progressive hearing loss mutation (p.D1647G, "jordan"). Here, we present cryo-electron microscopy structures of myosin-15 bound to F-actin, providing a framework for interpreting the impacts of deafness mutations on motor activity and actin nucleation. Rigor myosin-15 evokes conformational changes in F-actin yet maintains flexibility in actin's D-loop, which mediates inter-subunit contacts, while the jordan mutant locks the D-loop in a single conformation. Adenosine diphosphate-bound myosin-15 also locks the D-loop, which correspondingly blunts actin-polymerization stimulation. We propose myosin-15 enhances polymerization by bridging actin protomers, regulating nucleation efficiency by modulating actin's structural plasticity in a myosin nucleotide state-dependent manner. This tunable regulation of actin polymerization could be harnessed to precisely control stereocilium height.

3.
Nat Nanotechnol ; 13(9): 870, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29500397

RESUMEN

An incorrect Supplementary Information file was originally published. The file has been replaced with the correct one.

4.
Nat Nanotechnol ; 13(1): 34-40, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29109539

RESUMEN

Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems 1 or in living cells 2 . Previously, synthetic nucleic acid motors 3-5 and modified natural protein motors 6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors 11-15 . Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure 7,9 . We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing 16 . Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement 17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.


Asunto(s)
Miosinas/química , Oligonucleótidos/química , ARN/química , Animales , Secuencia de Bases , Bioingeniería , Modelos Moleculares , Movimiento (Física) , Nanotecnología , Conformación de Ácido Nucleico , Porcinos
5.
Elife ; 62017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29199952

RESUMEN

Despite extensive scrutiny of the myosin superfamily, the lack of high-resolution structures of actin-bound states has prevented a complete description of its mechanochemical cycle and limited insight into how sequence and structural diversification of the motor domain gives rise to specialized functional properties. Here we present cryo-EM structures of the unique minus-end directed myosin VI motor domain in rigor (4.6 Å) and Mg-ADP (5.5 Å) states bound to F-actin. Comparison to the myosin IIC-F-actin rigor complex reveals an almost complete lack of conservation of residues at the actin-myosin interface despite preservation of the primary sequence regions composing it, suggesting an evolutionary path for motor specialization. Additionally, analysis of the transition from ADP to rigor provides a structural rationale for force sensitivity in this step of the mechanochemical cycle. Finally, we observe reciprocal rearrangements in actin and myosin accompanying the transition between these states, supporting a role for actin structural plasticity during force generation by myosin VI.


Asunto(s)
Actinas/química , Actinas/metabolismo , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Animales , Fenómenos Químicos , Microscopía por Crioelectrón , Fenómenos Mecánicos , Modelos Moleculares , Porcinos
6.
Cell ; 167(6): 1571-1585.e18, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27839864

RESUMEN

Cell migration in confined 3D tissue microenvironments is critical for both normal physiological functions and dissemination of tumor cells. We discovered a cytoskeletal structure that prevents damage to the nucleus during migration in confined microenvironments. The formin-family actin filament nucleator FMN2 associates with and generates a perinuclear actin/focal adhesion (FA) system that is distinct from previously characterized actin/FA structures. This system controls nuclear shape and positioning in cells migrating on 2D surfaces. In confined 3D microenvironments, FMN2 promotes cell survival by limiting nuclear envelope damage and DNA double-strand breaks. We found that FMN2 is upregulated in human melanomas and showed that disruption of FMN2 in mouse melanoma cells inhibits their extravasation and metastasis to the lung. Our results indicate a critical role for FMN2 in generating a perinuclear actin/FA system that protects the nucleus and DNA from damage to promote cell survival during confined migration and thus promote cancer metastasis.


Asunto(s)
Núcleo Celular/metabolismo , Adhesiones Focales , Neoplasias Pulmonares/secundario , Melanoma/patología , Proteínas de Microfilamentos/metabolismo , Metástasis de la Neoplasia , Proteínas Nucleares/metabolismo , Actinas/metabolismo , Animales , Roturas del ADN de Doble Cadena , Embrión de Mamíferos/citología , Matriz Extracelular/metabolismo , Femenino , Forminas , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso
7.
J Biol Chem ; 290(37): 22494-506, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26124273

RESUMEN

INF2 (inverted formin 2) is a formin protein with unique biochemical effects on actin. In addition to the common formin ability to accelerate actin nucleation and elongation, INF2 can also sever filaments and accelerate their depolymerization. Although we understand key attributes of INF2-mediated severing, we do not understand the mechanism by which INF2 accelerates depolymerization subsequent to severing. Here, we show that INF2 can create short filaments (<60 nm) that continuously turn over actin subunits through a combination of barbed end elongation, severing, and WH2 motif-mediated depolymerization. This pseudo-steady state condition occurs whether starting from actin filaments or monomers. The rate-limiting step of the cycle is nucleotide exchange of ADP for ATP on actin monomers after release from the INF2/actin complex. Profilin addition has two effects: 1) to accelerate filament turnover 6-fold by accelerating nucleotide exchange and 2) to shift the equilibrium toward polymerization, resulting in longer filaments. In sum, our findings show that the combination of multiple interactions of INF2 with actin can work in concert to increase the ATP turnover rate of actin. Depending on the ratio of INF2:actin, this increased flux can result in rapid filament depolymerization or maintenance of short filaments. We also show that high concentrations of cytochalasin D accelerate ATP turnover by actin but through a different mechanism from that of INF2.


Asunto(s)
Citoesqueleto de Actina/química , Proteínas de Microfilamentos/química , Profilinas/química , Pliegue de Proteína , Citoesqueleto de Actina/genética , Secuencias de Aminoácidos , Forminas , Humanos , Proteínas de Microfilamentos/genética , Profilinas/genética
8.
J Cell Sci ; 127(Pt 21): 4549-60, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25217628

RESUMEN

Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER-mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals.


Asunto(s)
Actinas/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Animales , Dinaminas/metabolismo , Humanos , Modelos Biológicos , Miosinas/metabolismo
9.
Chem Commun (Camb) ; 50(81): 12037-9, 2014 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-25170530

RESUMEN

We present a versatile method to characterize ATPase and kinase activities and discover new inhibitors of these proteins. The proton NMR-based assay directly monitors ATP turnover and is easy to implement, requires no additional reagents and can potentially be applied to GTP. We validated the method's accuracy, applied it to the monitoring of ATP turnover by actin and to the screening of ATPase inhibitors, and showed that it is also applicable for the monitoring of GTP hydrolysis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Inhibidores Enzimáticos/química , Espectroscopía de Resonancia Magnética , Adenosina Trifosfatasas/antagonistas & inhibidores , Inhibidores Enzimáticos/metabolismo , Hidrólisis
10.
Curr Biol ; 24(14): R660-R672, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25050967

RESUMEN

A tendency in cell biology is to divide and conquer. For example, decades of painstaking work have led to an understanding of endoplasmic reticulum (ER) and Golgi structure, dynamics, and transport. In parallel, cytoskeletal researchers have revealed a fantastic diversity of structure and cellular function in both actin and microtubules. Increasingly, these areas overlap, necessitating an understanding of both organelle and cytoskeletal biology. This review addresses connections between the actin/microtubule cytoskeletons and organelles in animal cells, focusing on three key areas: ER structure and function; ER-to-Golgi transport; and Golgi structure and function. Making these connections has been challenging for several reasons: the small sizes and dynamic characteristics of some components; the fact that organelle-specific cytoskeletal elements can easily be obscured by more abundant cytoskeletal structures; and the difficulties in imaging membranes and cytoskeleton simultaneously, especially at the ultrastructural level. One major concept is that the cytoskeleton is frequently used to generate force for membrane movement, with two potential consequences: translocation of the organelle, or deformation of the organelle membrane. While initially discussing issues common to metazoan cells in general, we subsequently highlight specific features of neurons, since these highly polarized cells present unique challenges for organellar distribution and dynamics.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Microtúbulos/metabolismo , Animales , Humanos , Ratones , Neuronas/metabolismo , Orgánulos/metabolismo
11.
Langmuir ; 30(25): 7533-9, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24915113

RESUMEN

Self-organization of cytoskeletal proteins such as actin and tubulin into filaments and microtubules is frequently assisted by the proteins binding to them. Formins are regulatory proteins that nucleate the formation of new filaments and are essential for a wide range of cellular functions. The vertebrate inverted formin 2 (INF2) has both actin filament nucleating and severing/depolymerizing activities connected to its ability to encircle actin filaments. Using atomic force microscopy, we report that a formin homology 2 (FH2) domain-containing construct of INF2 (INF2-FH1-FH2-C or INF2-FFC) self-assembles into nanoscale ringlike oligomeric structures in the absence of actin filaments, demonstrating an inherent ability to reorganize from a dimeric to an oligomeric state. A construct lacking the C-terminal region (INF2-FH1-FH2 or INF2-FF) also oligomerizes, confirming the dominant role of FH2-mediated interactions. Moreover, INF2-FFC domains were observed to organize into ringlike structures around single actin filaments. This is the first demonstration that formin FH2 domains can self-assemble into oligomers in the absence of filaments and has important implications for observing unaveraged decoration and/or remodeling of filaments by actin binding proteins.


Asunto(s)
Actinas/química , Actinas/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Microscopía de Fuerza Atómica/métodos , Unión Proteica
12.
Curr Biol ; 24(2): 156-164, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24412206

RESUMEN

BACKGROUND: INF2 is a formin protein with the unique ability to accelerate both actin polymerization and depolymerization, the latter requiring filament severing. Mutations in INF2 lead to the kidney disease focal segmental glomerulosclerosis (FSGS) and the neurological disorder Charcot-Marie Tooth disease (CMTD). RESULTS: Here, we compare the severing mechanism of INF2 with that of the well-studied severing protein cofilin. INF2, like cofilin, binds stoichiometrically to filament sides and severs in a manner that requires phosphate release from the filament. In contrast to cofilin, however, INF2 binds ADP and ADP-Pi filaments equally well. Furthermore, two-color total internal reflection fluorescence (TIRF) microscopy reveals that a low number of INF2 molecules, as few as a single INF2 dimer, are capable of severing, while measurable cofilin-mediated severing requires more extensive binding. Hence, INF2 is a more potent severing protein than cofilin. While a construct containing the FH1 and FH2 domains alone has some severing activity, addition of the C-terminal region increases severing potency by 40-fold, and we show that the WH2-resembling DAD motif is responsible for this increase. Helical 3D reconstruction from electron micrographs at 20 Å resolution provides a structure of filament-bound INF2, showing that the FH2 domain encircles the filament. CONCLUSIONS: We propose a severing model in which FH2 binding and phosphate release causes local filament deformation, allowing the DAD to bind adjacent actin protomers, further disrupting filament structure.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Proteínas de Microfilamentos/química , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Conejos
13.
PLoS One ; 9(1): e85090, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454796

RESUMEN

Actin depolymerizing factor-homology (ADF-H) family proteins regulate actin filament dynamics at multiple cellular locations. Herein, we have investigated the function of the ADF-H family member coactosin-like 1 (COTL1) in the regulation of actin dynamics at the T cell immune synapse (IS). We initially identified COTL1 in a genetic screen to identify novel regulators of T cell activation, and subsequently found that it associates with F-actin and localizes at the IS in response to TCR+CD28 stimulation. Live cell microscopy showed that depletion of COTL1 protein impaired T cell spreading in response to TCR ligation and abrogated lamellipodial protrusion at the T cell - B cell contact site, producing only a band of F-actin. Significantly, re-expression of wild type COTL1, but not a mutant deficient in F-actin binding could rescue these defects. In addition, COTL1 depletion reduced T cell migration. In vitro studies showed that COTL1 and cofilin compete with each other for binding to F-actin, and COTL1 protects F-actin from cofilin-mediated depolymerization. While depletion of cofilin enhanced F-actin assembly and lamellipodial protrusion at the IS, concurrent depletion of both COTL1 and cofilin restored lamellipodia formation. Taken together, our results suggest that COTL1 regulates lamellipodia dynamics in part by protecting F-actin from cofilin-mediated disassembly.


Asunto(s)
Cofilina 1/antagonistas & inhibidores , Sinapsis Inmunológicas/metabolismo , Proteínas de Microfilamentos/metabolismo , Seudópodos/metabolismo , Actinas/metabolismo , Antígenos CD28/metabolismo , Movimiento Celular/efectos de los fármacos , Quimiocinas/farmacología , Cofilina 1/metabolismo , Prueba de Complementación Genética , Humanos , Sinapsis Inmunológicas/efectos de los fármacos , Células Jurkat , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Seudópodos/efectos de los fármacos , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
14.
J Biol Chem ; 287(41): 34234-45, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22879592

RESUMEN

INF2 (inverted formin 2) is a formin protein with unusual biochemical characteristics. As with other formins, the formin homology 2 (FH2) domain of INF2 accelerates actin filament assembly and remains at the barbed end, modulating elongation. The unique feature of INF2 is its ability to sever filaments and enhance depolymerization, which requires the C-terminal region. Physiologically, INF2 acts in the secretory pathway and is mutated in two human diseases, focal and segmental glomerulosclerosis and Charcot-Marie-Tooth disease. In this study, we investigate the effects of mutating two FH2 residues found to be key in other formins: Ile-643 and Lys-792. Surprisingly, neither mutation abolishes barbed end binding, as judged by pyrene-actin and total internal reflection (TIRF) microscopy elongation assays. The I643A mutation causes tight capping of a subset of filaments, whereas K792A causes slow elongation of all filaments. The I643A mutation has a minor inhibitory effect on polymerization activity but causes almost complete abolition of severing and depolymerization activity. The K792A mutation has relatively small effects on polymerization, severing, and depolymerization. In cells, the K792A mutant causes actin accumulation around the endoplasmic reticulum to a similar extent as wild type, whereas the I643A mutant causes no measurable polymerization. The inability of I643A to induce actin polymerization in cells is explained by its inability to promote robust actin polymerization in the presence of capping protein. These results highlight an important point: it is dangerous to assume that mutation of conserved FH2 residues will have equivalent effects in all formins. The work also suggests that both mutations have effects on the mechanism of processive elongation.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Microfilamentos/metabolismo , Mutación Missense , Proteínas de Capping de la Actina/genética , Citoesqueleto de Actina/genética , Actinas/genética , Sustitución de Aminoácidos , Línea Celular Tumoral , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Retículo Endoplásmico/genética , Forminas , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Estructura Terciaria de Proteína
15.
Mol Biol Cell ; 22(23): 4575-87, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21998204

RESUMEN

A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin. Constructs containing FH1, FH2, and C-terminal domains of all three formins bind microtubules with high affinity (K(d) < 100 nM). However, only mDia2 binds microtubules at 1:1 stoichiometry, with INF2 and mDia1 showing saturating binding at approximately 1:3 (formin dimer:tubulin dimer). INF2-FH1FH2C is a potent microtubule-bundling protein, an effect that results in a large reduction in catastrophe rate. In contrast, neither mDia1 nor mDia2 is a potent microtubule bundler. The C-termini of mDia2 and INF2 have different functions in microtubule interaction, with mDia2's C-terminus required for high-affinity binding and INF2's C-terminus required for bundling. mDia2's C-terminus directly binds microtubules with submicromolar affinity. These formins also differ in their abilities to bind actin and microtubules simultaneously. Microtubules strongly inhibit actin polymerization by mDia2, whereas they moderately inhibit mDia1 and have no effect on INF2. Conversely, actin monomers inhibit microtubule binding/bundling by INF2 but do not affect mDia1 or mDia2. These differences in interactions with microtubules and actin suggest differential function in cellular processes requiring both cytoskeletal elements.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , NADPH Deshidrogenasa/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Proteínas Portadoras/genética , Forminas , Humanos , Ratones , Proteínas de Microfilamentos/genética , Proteínas Asociadas a Microtúbulos/genética , NADPH Deshidrogenasa/genética , Estructura Terciaria de Proteína , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...