Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 571(7766): 555-559, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31308535

RESUMEN

Water strongly influences the physical properties of the mantle and enhances its ability to melt or convect. Its presence can also be used to trace recycling of surface reservoirs down to the deep mantle1, which makes knowledge of the water content in the Earth's interior and its evolution crucial for understanding global geodynamics. Komatiites (MgO-rich ultramafic magmas) result from a high degree of mantle melting at high pressures2 and thus are excellent probes of the chemical composition and water contents of the deep mantle. An excess of water over elements that show similar geochemical behaviour during mantle melting (for example, cerium) was recently found in melt inclusions in the most magnesium-rich olivine in 2.7-billion-year-old komatiites from Canada3 and Zimbabwe4. These data were taken as evidence for a deep hydrated mantle reservoir, probably the transition zone, in the Neoarchaean era (2.8 to 2.5 billion years ago). Here we confirm the mantle source of this water by measuring deuterium-to-hydrogen ratios in these melt inclusions and present similar data for 3.3-billion-year-old komatiites from the Barberton greenstone belt. From the hydrogen isotope ratios, we show that the mantle sources of these melts contained excess water, which implies that a deep hydrous mantle reservoir has been present in the Earth's interior since at least the Palaeoarchaean era (3.6 to 3.2 billion years ago). The reconstructed initial hydrogen isotope composition of komatiites is more depleted in deuterium than surface reservoirs or typical mantle but resembles that of oceanic crust that was initially altered by seawater and then dehydrated during subduction. Together with an excess of chlorine and depletion of lead in the mantle sources of komatiites, these results indicate that seawater-altered lithosphere recycling into the deep mantle, arguably by subduction, started before 3.3 billion years ago.

2.
Proc Natl Acad Sci U S A ; 115(34): 8535-8540, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30082400

RESUMEN

Dust grains of organic matter were the main reservoir of C and N in the forming Solar System and are thus considered to be an essential ingredient for the emergence of life. However, the physical environment and the chemical mechanisms at the origin of these organic grains are still highly debated. In this study, we report high-precision triple oxygen isotope composition for insoluble organic matter isolated from three emblematic carbonaceous chondrites, Orgueil, Murchison, and Cold Bokkeveld. These results suggest that the O isotope composition of carbonaceous chondrite insoluble organic matter falls on a slope 1 correlation line in the triple oxygen isotope diagram. The lack of detectable mass-dependent O isotopic fractionation, indicated by the slope 1 line, suggests that the bulk of carbonaceous chondrite organics did not form on asteroidal parent bodies during low-temperature hydrothermal events. On the other hand, these O isotope data, together with the H and N isotope characteristics of insoluble organic matter, may indicate that parent bodies of different carbonaceous chondrite types largely accreted organics formed locally in the protosolar nebula, possibly by photochemical dissociation of C-rich precursors.

3.
Nat Commun ; 8: 14322, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28181497

RESUMEN

The Ontong Java and Manihiki oceanic plateaus are believed to have formed through high-degree melting of a mantle plume head. Boninite-like, low-Ti basement rocks at Manihiki, however, imply a more complex magma genesis compared with Ontong Java basement lavas that can be generated by ∼30% melting of a primitive mantle source. Here we show that the trace element and isotope compositions of low-Ti Manihiki rocks can best be explained by re-melting of an ultra-depleted source (possibly a common mantle component in the Ontong Java and Manihiki plume sources) re-enriched by ≤1% of an ocean-island-basalt-like melt component. Unlike boninites formed via hydrous flux melting of refractory mantle at subduction zones, these boninite-like intraplate rocks formed through adiabatic decompression melting of refractory plume material that has been metasomatized by ocean-island-basalt-like melts. Our results suggest that caution is required before assuming all Archaean boninites were formed in association with subduction processes.

4.
Nature ; 531(7596): 628-32, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27029278

RESUMEN

Archaean komatiites (ultramafic lavas) result from melting under extreme conditions of the Earth's mantle. Their chemical compositions evoke very high eruption temperatures, up to 1,600 degrees Celsius, which suggests even higher temperatures in their mantle source. This message is clouded, however, by uncertainty about the water content in komatiite magmas. One school of thought holds that komatiites were essentially dry and originated in mantle plumes while another argues that these magmas contained several per cent water, which drastically reduced their eruption temperature and links them to subduction processes. Here we report measurements of the content of water and other volatile components, and of major and trace elements in melt inclusions in exceptionally magnesian olivine (up to 94.5 mole per cent forsterite). This information provides direct estimates of the composition and crystallization temperature of the parental melts of Archaean komatiites. We show that the parental melt for 2.7-billion-year-old komatiites from the Abitibi greenstone belt in Canada contained 30 per cent magnesium oxide and 0.6 per cent water by weight, and was depleted in highly incompatible elements. This melt began to crystallize at around 1,530 degrees Celsius at shallow depth and under reducing conditions, and it evolved via fractional crystallization of olivine, accompanied by minor crustal assimilation. As its major- and trace-element composition and low oxygen fugacities are inconsistent with a subduction setting, we propose that its high H2O/Ce ratio (over 6,000) resulted from entrainment into the komatiite source of hydrous material from the mantle transition zone. These results confirm a plume origin for komatiites and high Archaean mantle temperatures, and evoke a hydrous reservoir in the deep mantle early in Earth's history.

5.
Science ; 316(5823): 412-7, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17395795

RESUMEN

Plate tectonic processes introduce basaltic crust (as eclogite) into the peridotitic mantle. The proportions of these two sources in mantle melts are poorly understood. Silica-rich melts formed from eclogite react with peridotite, converting it to olivine-free pyroxenite. Partial melts of this hybrid pyroxenite are higher in nickel and silicon but poorer in manganese, calcium, and magnesium than melts of peridotite. Olivine phenocrysts' compositions record these differences and were used to quantify the contributions of pyroxenite-derived melts in mid-ocean ridge basalts (10 to 30%), ocean island and continental basalts (many >60%), and komatiites (20 to 30%). These results imply involvement of 2 to 20% (up to 28%) of recycled crust in mantle melting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA