Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(3): e0084423, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37166300

RESUMEN

The biological activity of polycations is usually associated with their biocidal properties. Their antibacterial features are well known, but in this work, observations on the antifungal properties of macromolecules obtained by methacrylamido propyl trimethyl ammonium chloride (MAPTAC) polymerization are presented. The results, not previously reported, make it possible to correlate antifungal properties directly with the structure of the macromolecule, in particular the molecular mass. The polymers described here have antifungal activity against some filamentous fungi. The strongest effect occurs for polymers with a mass of about 0.5 mDa which have confirmed activity against the multidrug-resistant species Scopulariopsis brevicaulis, Fusarium oxysporum, and Fusarium solani, as well as the dermatophytes Trichophyton mentagrophytes, Trichophyton rubrum, Trichophyton interdigitale, and Trichophyton tonsurans. In addition, this publication describes the effects of these macromolecular systems on serum and blood components and provides a preliminary assessment of toxicity on cell lines of skin-forming cells, i.e., fibroblasts and keratinocytes. Additionally, using a Franz diffusion chamber, a negligibly low transport of the active polymer through the skin was demonstrated, which is a desirable effect for externally applied antifungal drugs. IMPORTANCE Infectious diseases are a very big medical, social, and economic problem. Even before the COVID-19 pandemic, certain infections were among of the most common causes of death. The difficulties in the treatment of infectious diseases concern in particular fungal diseases, against which we have only a few classes of drugs represented by a few substances. The publication presents the preliminary results of the in vitro antifungal activity studies of four MAPTAC polymers on different fungal species and their cytotoxicity to human cells (fibroblasts and keratinocytes). The paper also compares these properties with analogous ones of two commonly used antifungal drugs, ciclopirox and terbinafine.


Asunto(s)
Antifúngicos , COVID-19 , Humanos , Antifúngicos/toxicidad , Cloruro de Amonio , Pandemias , Pruebas de Sensibilidad Microbiana , Polímeros/farmacología
2.
Molecules ; 27(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897963

RESUMEN

In this work, we present a systematic study on the influence of Cu2+ ion concentration in the impregnation solution on the morphology, structure, optical, semiconducting, and photoelectrochemical properties of anodic CuOx-TiO2 materials. Studied materials were prepared by immersion in solutions with different concentrations of (CH3COO)2Cu and subjected to air-annealing at 400 °C, 500 °C, or 600 °C for 2 h. The complex characterization of all studied samples was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), reflectance measurements, Mott-Schottky analyses, and photocurrent measurements. It was found that band gap engineering based on coupling CuO with TiO2 (Eg~3.3 eV) is an effective strategy to increase the absorption in visible light due to band gap narrowing (CuOx-TiO2 materials had Eg~2.4 eV). Although the photoactivity of CuO-TiO2 materials decreased in the UV range due to the deposition of CuO on the TiO2 surface, in the Vis range increased up to 600 nm at the same time.

3.
Materials (Basel) ; 14(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916848

RESUMEN

Nanoporous tin oxide layers obtained via anodic oxidation of metallic tin at the potential of 4 V in the alkaline electrolyte (1 M NaOH) were soaked in distilled water for various durations (from 2 h to 120 h) to verify the influence of water-enabled crystallization on the morphology, composition, and related optical and photoelectrochemical properties of such kind of anodic SnOx. Although water soaking generally contributes to more stoichiometric and crystalline tin oxide, it was confirmed that at the initial stages of the water-induced dissolution-redeposition process, material exhibits enhanced photoelectrochemical performance under simulated sunlight irradiation. However, long-time exposure to water results in a gradual widening of the material's band gap, shifting of the photoelectrochemical spectra towards higher energies, and almost complete deterioration of the photoelectrochemical activity under sunlight irradiation.

4.
RSC Adv ; 11(61): 38727-38738, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-35493210

RESUMEN

The structural and chemical modification of TiO2 nanotubes (NTs) by the deposition of a well-controlled Au deposit was investigated using a combination of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), Raman measurements, UV-Vis spectroscopy and photoelectrochemical investigations. The fabrication of the materials focused on two important factors: the deposition of Au nanoparticles (NPs) in UHV (ultra high vacuum) conditions (1-2 × 10-8 mbar) on TiO2 nanotubes (NTs) having a diameter of ∼110 nm, and modifying the electronic interaction between the TiO2 NTs and Au nanoparticles (NPs) with an average diameter of about 5 nm through the synergistic effects of SMSI (Strong Metal Support Interaction) and LSPR (Local Surface Plasmon Resonance). Due to the formation of unique places in the form of "hot spots", the proposed nanostructures proved to be photoactive in the UV-Vis range, where a characteristic gold plasmonic peak was observed at a wavelength of 580 nm. The photocurrent density of Au deposited TiO2 NTs annealed at 650 °C was found to be much greater (14.7 µA cm-2) than the corresponding value (∼0.2 µA cm-2) for nanotubes in the as-received state. The IPCE (incident photon current efficiency) spectral evidence also indicates an enhancement of the photoconversion of TiO2 NTs due to Au NP deposition without any significant change in the band gap energy of the titanium dioxide (E g ∼3.0 eV). This suggests that a plasmon-induced resonant energy transfer (PRET) was the dominant effect responsible for the photoactivity of the obtained materials.

5.
Nanomaterials (Basel) ; 10(3)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110900

RESUMEN

A simple two-step electrochemical method for the fabrication of a new type of hierarchical Sn/SnOx micro/nanostructures is proposed for the very first time. Firstly, porous metallic Sn foams are grown on Sn foil via hydrogen bubble-assisted electrodeposition from an acidulated tin chloride electrolyte. As-obtained metallic foams consist of randomly distributed dendrites grown uniformly on the entire metal surface. The estimated value of pore diameter near the surface is ~35 µm, while voids with a diameter of ~15 µm appear in a deeper part of the deposit. Secondly, a layer of amorphous nanoporous tin oxide (with a pore diameter of ~60 nm) is generated on the metal surface by its anodic oxidation in an alkaline electrolyte (1 M NaOH) at the potential of 4 V for various durations. It is confirmed that if only optimal conditions are applied, the dendritic morphology of the metal foam does not change significantly, and an open-porous structure is still preserved after anodization. Such kinds of hierarchical nanoporous Sn/SnOx systems are superhydrophilic, contrary to those obtained by thermal oxidation of metal foams which are hydrophobic. Finally, the photoelectrochemical activity of the nanostructured metal/metal oxide electrodes is also presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...