Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(22): 13488-13495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744537

RESUMEN

Coronavirus belongs to the coronaviridae family, having a single-stranded RNA as genetic material of 26-42 kb in size. The first coronavirus infection emerged in 2002, caused by SARS-CoV1. Since then, genome sequences and three-dimensional structures of crucial proteins and enzymes of the virus have been studied in detail. The novel coronavirus (nCoV) outbreak has caused the COVID19 pandemic, which is responsible for the deaths of millions of people worldwide. The nCoV was later renamed as SARS-CoV2. The details of most of the COV proteins are available at the atomic and molecular levels. The entire genome is made up of 12 open reading frames that code for 27 different proteins. The spike surface glycoprotein, the envelope protein, the nucleocapsid protein, and the membrane protein are the four structural proteins which are required for virus attachment, entrance, assembly, and pathogenicity. The remaining proteins encoded are called non-structural (NSPs) and support the survival of the virus. Several non-structural proteins are also validated targets for drug development against coronavirus and are being used for drug design purposes. To perform a comparative study, sequences and three-dimensional structures of four crucial viral enzymes, Mpro, PLpro, RdRp, and EndoU from SARS-CoV1 and SARS-CoV2 variants were analyzed. The key structural elements and ligands recognizing amino acid residues were found to be similar in enzymes from both strains. The significant sequences and structural resemblance also suggest that a drug developed either for SARS-CoV1 or SARS-CoV2 using these enzymes may also have the potential to cross-react.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , ARN Viral , Humanos , SARS-CoV-2/genética , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Biología
2.
J Biomol Struct Dyn ; 40(12): 5507-5514, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33491573

RESUMEN

Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV2) is responsible for fetal pneumonia called COVID19. SARS-CoV2 emerged in Wuhan, Hubei Province of China in December 2019. The COVID19 pandemic has now gripped the entire world with more than 70 million cases and over 1.5 million deaths so far. There no treatment option for COVID19 is in term of a drug or vaccine is currently available. Therefore drug repurposing may only provide a quick method for utilizing existing drugs for a therapeutic option. The virus genome contains several non-structural proteins (NSP) which serve as target for designing of antiviral agents. NSP9 of SARS-CoV2 encodes for a replicase enzyme which is essential for the virus replication in the host cell. In search of potent inhibitors, we have screened FDA approved drugs against NSP9 using in silico methods. Five drugs fluspirilene, troglitazone, alvesco, dihydroergotoxine and avodart were found to have highest affinities with the replicase. The molecular dynamics simulation (MDS) studies demonstrated strong drugs binding and stable NSP9-drugs complexes formation. The findings are also strongly supported by root-mean-square deviation, root-mean-square fluctuation, radius of gyration, and hydrogen bond analysis of the complexes. Principal component analysis showed the stable conformation of NSP9 upon drug binding. It could be inferred that these five drugs individually or in combinations may be used as potential inhibitors of NSP9 of SARS-CoV-2 after exploring their in vivo antiviral potential.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/química , Antivirales/farmacología , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , ARN Viral
3.
J Biomol Struct Dyn ; 39(12): 4201-4211, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32462970

RESUMEN

SARS-CoV-2 is causative agent of COVID-19, which is responsible for severe social and economic disruption globally. Lack of vaccine or antiviral drug with clinical efficacy suggested that drug repurposing approach may provide a quick therapeutic solution to COVID-19. Nonstructural protein-15 (NSP15) encodes for an uridylate-specific endoribonuclease (EndoU) enzyme, essential for virus life cycle and an attractive target for drug development. We have performed in silico based virtual screening of FDA approved compounds targeting EndoU in search of COVID-19 drugs from commercially available approved molecules. Two drugs Glisoxepide and Idarubicin used for treatment for diabetes and leukemia, respectively, were selected as stronger binder of EndoU. Both the drugs bound to the active site of the viral endonuclease by forming attractive intermolecular interactions with catalytically essential amino acid residues, His235, His250, and Lys290. Molecular dynamics simulation studies showed stable conformation dynamics upon drugs binding to endoU. The binding free energies for Glisoxepide and Idarubicin were calculated to be -141 ± 11 and -136 ± 16 kJ/mol, respectively. The IC50 were predicted to be 9.2 µM and 30 µM for Glisoxepide and Idarubicin, respectively. Comparative structural analysis showed the stronger binding of EndoU to Glisoxepide and Idarubicin than to uridine monophosphate (UMP). Surface area calculations showed buried are of 361.8Å2 by Glisoxepide which is almost double of the area occupied by UMP suggesting stronger binding of the drug than the ribonucleotide. However, further studies on these drugs for evaluation of their clinical efficacy and dose formulations may be required, which may provide a quick therapeutic option to treat COVID-19. Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Preparaciones Farmacéuticas , Antivirales , Reposicionamiento de Medicamentos , Endorribonucleasas , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2
4.
Drug Discov Today ; 20(7): 863-73, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25794602

RESUMEN

Inhibition of the production of inflammatory mediators by the action of nonsteroidal anti-inflammatory drugs (NSAIDs) is highly accredited to their recognition of cyclooxygenase enzymes. Along with inflammation relief, however, NSAIDs also cause adverse effects. Although NSAIDs strongly inhibit enzymes of the prostaglandin synthesis pathways, several other proteins also serve as fairly potent targets for these drugs. Based on their recognition pattern, these receptors are categorised as enzymes modifying NSAIDs, noncatalytic proteins binding to NSAIDs and enzymes with catalytic functions that are inhibited by NSAIDs. The extensive binding of NSAIDs is responsible for their limited in vivo efficacy as well as the large spectrum of their effects. The biochemical nature of drugs binding to multiple protein targets and its implications on physiology are discussed.


Asunto(s)
Antiinflamatorios no Esteroideos/efectos adversos , Antiinflamatorios no Esteroideos/química , Inhibidores de la Ciclooxigenasa/efectos adversos , Inhibidores de la Ciclooxigenasa/química , Inflamación/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/metabolismo , Sitios de Unión , Inhibidores de la Ciclooxigenasa/metabolismo , Humanos , Inflamación/enzimología , Mediadores de Inflamación/metabolismo , Simulación del Acoplamiento Molecular , Prostaglandina-Endoperóxido Sintasas/química , Prostaglandina-Endoperóxido Sintasas/metabolismo , Unión Proteica , Conformación Proteica , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA