Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbon Balance Manag ; 15(1): 22, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33052488

RESUMEN

BACKGROUND: Cities contribute more than 70% of global anthropogenic carbon dioxide (CO2) emissions and are leading the effort to reduce greenhouse gas (GHG) emissions through sustainable planning and development. However, urban greenhouse gas mitigation often relies on self-reported emissions estimates that may be incomplete and unverifiable via atmospheric monitoring of GHGs. We present the Hestia Scope 1 fossil fuel CO2 (FFCO2) emissions for the city of Baltimore, Maryland-a gridded annual and hourly emissions data product for 2010 through 2015 (Hestia-Baltimore v1.6). We also compare the Hestia-Baltimore emissions to overlapping Scope 1 FFCO2 emissions in Baltimore's self-reported inventory for 2014. RESULTS: The Hestia-Baltimore emissions in 2014 totaled 1487.3 kt C (95% confidence interval of 1158.9-1944.9 kt C), with the largest emissions coming from onroad (34.2% of total city emissions), commercial (19.9%), residential (19.0%), and industrial (11.8%) sectors. Scope 1 electricity production and marine shipping were each generally less than 10% of the city's total emissions. Baltimore's self-reported Scope 1 FFCO2 emissions included onroad, natural gas consumption in buildings, and some electricity generating facilities within city limits. The self-reported Scope 1 FFCO2 total of 1182.6 kt C was similar to the sum of matching emission sectors and fuels in Hestia-Baltimore v1.6. However, 20.5% of Hestia-Baltimore's emissions were in sectors and fuels that were not included in the self-reported inventory. Petroleum use in buildings were omitted and all Scope 1 emissions from industrial point sources, marine shipping, nonroad vehicles, rail, and aircraft were categorically excluded. CONCLUSIONS: The omission of petroleum combustion in buildings and categorical exclusions of several sectors resulted in an underestimate of total Scope 1 FFCO2 emissions in Baltimore's self-reported inventory. Accurate Scope 1 FFCO2 emissions, along with Scope 2 and 3 emissions, are needed to inform effective urban policymaking for system-wide GHG mitigation. We emphasize the need for comprehensive Scope 1 emissions estimates for emissions verification and measuring progress towards Scope 1 GHG mitigation goals using atmospheric monitoring.

2.
J Geophys Res Atmos ; 125(9)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33094084

RESUMEN

To study emissions of CO2 in the Baltimore, MD-Washington, D.C. (Balt-Wash) area, an aircraft campaign was conducted in February 2015, as part of the FLAGG-MD (Fluxes of Atmospheric Greenhouse-Gases in Maryland) project. During the campaign, elevated mole fractions of CO2 were observed downwind of the urban center and local power plants. Upwind flight data and HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model analyses help account for the impact of emissions outside the Balt-Wash area. The accuracy, precision, and sensitivity of CO2 emissions estimates based on the mass balance approach were assessed for both power plants and cities. Our estimates of CO2 emissions from two local power plants agree well with their CEMS (Continuous Emissions Monitoring Systems) records. For the 16 power plant plumes captured by the aircraft, the mean percentage difference of CO2 emissions was -0.3 %. For the Balt-Wash area as a whole, the 1σ CO2 emission rate uncertainty for any individual aircraft-based mass balance approach experiment was ±38 %. Treating the mass balance experiments, which were repeated seven times within nine days, as individual quantifications of the Balt-Wash CO2 emissions, the estimation uncertainty was ±16 % (standard error of the mean at 95% CL). Our aircraft-based estimate was compared to various bottom-up fossil fuel CO2 (FFCO2) emission inventories. Based on the FLAGG-MD aircraft observations, we estimate 1.9±0.3 MtC of FFCO2 from the Balt-Wash area during the month of February 2015. The mean estimate of FFCO2 from the four bottom-up models was 2.2±0.3 MtC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...