Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Neurol ; 50(4): 468-75, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11601499

RESUMEN

The human apolipoprotein E4 (ApoE4) isoform is associated with genetic risk for Alzheimer's disease. To assess the effects of different ApoE isoforms on amyloid plaque formation, human ApoE3 and ApoE4 were expressed in the brains of transgenic mice under the control of the human transferrin promoter. Mice were crossed with transgenic mice expressing human amyloid precursor protein containing the Swedish mutation (APPsw), which facilitates amyloid beta peptide (A beta) production. The following progeny were selected for characterization: APPsw+/- x ApoE3+/- and APPsw+/-, APPsw+/- x ApoE4+/- and APPsw+/- littermates. All mice analyzed were wild type for the endogenous mouse APP and ApoE genes. Mice expressing ApoE4 in combination with APPsw have accelerated A beta deposition in the brain as assessed by enzyme immunoassay for A beta40 and A beta42 extractable in 70% formic acid, by assessment of amyloid plaque formation using thioflavin-S staining, and by immunohistochemical staining with antibodies specific for A beta40 or A beta42 and the 4G8 monoclonal or 162 polyclonal antibody. No difference in the rate of A beta deposition in the brain was seen in mice expressing ApoE3 in combination with APPsw. Thus, our data are consistent with the observation in Alzheimer's disease that ApoE4 is associated with increased accumulation of A beta in the brain relative to ApoE3.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E/genética , Química Encefálica/genética , Fragmentos de Péptidos/metabolismo , Factores de Edad , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/inmunología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Anticuerpos Monoclonales , Apolipoproteína E4 , Encéfalo/metabolismo , Encéfalo/patología , Expresión Génica , Humanos , Técnicas para Inmunoenzimas , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/inmunología , Placa Amiloide/química , Placa Amiloide/metabolismo , Placa Amiloide/patología , Receptores Inmunológicos/metabolismo
2.
Ann Neurol ; 50(6): 730-40, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11761470

RESUMEN

Mutations of copper,zinc-superoxide dismutase (cu,zn SOD) are found in patients with a familial form of amyotrophic lateral sclerosis. When expressed in transgenic mice, mutant human cu,zn SOD causes progressive loss of motor neurons with consequent paralysis and death. Expression profiling of gene expression in SOD1-G93A transgenic mouse spinal cords indicates extensive glial activation coincident with the onset of paralysis at 3 months of age. This is followed by activation of genes involved in metal ion regulation (metallothionein-I, metallothionein-III, ferritin-H, and ferritin-L) at 4 months of age just prior to end-stage disease, perhaps as an adaptive response to the mitochondrial destruction caused by the mutant protein. Induction of ferritin-H and -L gene expression may also limit iron catalyzed hydroxyl radical formation and consequent oxidative damage to lipids, proteins, and nucleic acids. Thus, glial activation and adaptive responses to metal ion dysregulation are features of disease in this transgenic model of familial amyotrophic lateral sclerosis.


Asunto(s)
Perfilación de la Expresión Génica , Médula Espinal/fisiología , Superóxido Dismutasa/genética , Edad de Inicio , Esclerosis Amiotrófica Lateral/genética , Animales , Antioxidantes/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Transporte de Electrón/genética , Transporte de Electrón/fisiología , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones , Ratones Transgénicos , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neuroglía/química , Neuroglía/fisiología , Médula Espinal/citología , Estadística como Asunto , Superóxido Dismutasa/metabolismo , Timosina/genética , Timosina/metabolismo , Transcripción Genética/fisiología , Vimentina/genética , Vimentina/metabolismo , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
3.
Proc Natl Acad Sci U S A ; 97(23): 12571-6, 2000 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-11050163

RESUMEN

Deposition of aggregated protein into neurofilament-rich cytoplasmic inclusion bodies is a common cytopathological feature of neurodegenerative disease. How-or indeed whether-protein aggregation and inclusion body formation cause neurotoxicity are presently unknown. Here, we show that the capacity of superoxide dismutase (SOD) to aggregate into biochemically distinct, high molecular weight, insoluble protein complexes (IPCs) is a gain of function associated with mutations linked to autosomal dominant familial amyotrophic lateral sclerosis. SOD IPCs are detectable in spinal cord extracts from transgenic mice expressing mutant SOD several months before inclusion bodies and motor neuron pathology are apparent. Sequestration of mutant SOD into cytoplasmic inclusion bodies resembling aggresomes requires retrograde transport on microtubules. These data indicate that aggregation and inclusion body formation are mechanistically and temporally distinct processes.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo IV/enzimología , Superóxido Dismutasa/metabolismo , Animales , Línea Celular , Estabilidad de Enzimas , Femenino , Enfermedades Genéticas Congénitas , Enfermedad del Almacenamiento de Glucógeno Tipo IV/patología , Humanos , Cuerpos de Inclusión/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microtúbulos/metabolismo , Peso Molecular , Neuronas Motoras/enzimología , Neuronas Motoras/patología , Mutagénesis , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
5.
J Biol Chem ; 275(32): 24977-83, 2000 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-10818091

RESUMEN

In Alzheimer's disease, hyperphosphorylated tau is an integral part of the neurofibrillary tangles that form within neuronal cell bodies and fails to promote microtubule assembly. Dysregulation of the brain-specific tau protein kinase II is reported to play an important role in the pathogenesis of Alzheimer's disease (Patrick, G. N., Zukerberg, L., Nikolic, M., De La Monte, S., Dikkes, P., and Tsai, L.-H. (1999) Nature 402, 615-622). We report here that in vitro phosphorylation of human tau by human recombinant tau protein kinase II severely inhibits the ability of tau to promote microtubule assembly as monitored by tubulin polymerization. The ultrastructure of tau-mediated polymerized tubulin was visualized by electron microscopy and compared with phosphorylated tau. Consistent with the observed slower kinetics of tubulin polymerization, phosphorylated tau is compromised in its ability to generate microtubules. Moreover, we show that phosphorylation of microtubule-associated tau results in tau's dissociation from the microtubules and tubulin depolymerization. Mutational studies with human tau indicate that phosphorylation by tau protein kinase II at serine 396 and serine 404 is primarily responsible for the functional loss of tau-mediated tubulin polymerization. These in vitro results suggest a possible role for tau protein kinase II-mediated tau phosphorylation in initiating the destabilization of microtubules.


Asunto(s)
Microtúbulos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Serina , Tubulina (Proteína)/fisiología , Proteínas tau/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Quinasa 5 Dependiente de la Ciclina , Humanos , Insectos , Cinética , Microtúbulos/ultraestructura , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Transfección , Tubulina (Proteína)/ultraestructura , Proteínas tau/antagonistas & inhibidores , Proteínas tau/química
7.
Bioessays ; 22(3): 297-304, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10684590

RESUMEN

The recent broad advance in our understanding of human neurodegenerative diseases is based on the application of a new molecular approach. Through linkage analysis, the genes responsible for Huntington's disease, the spinocerebellar ataxias, and familial forms of Alzheimer's disease and amyotrophic lateral sclerosis (ALS) have been identified and cloned. The characterization of pathogenic mutations in such genes allows the creation of informative transgenic mouse models as, without exception, the genetic forms of adult neurodegenerative disease are due to toxicity of the mutant protein. Transgenic models provide insight into the oxidative mechanisms in ALS pathogenesis, the pathogenicity of expanded polyglutamine tracts in CAG triplet repeat disorders, and amyloidogenesis in Alzheimer's disease. Although such models have their limitations, they currently provide the best entry point for the study of human neurodegenerative diseases.


Asunto(s)
Ratones Transgénicos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Animales , Humanos , Ratones , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/fisiopatología , Repeticiones de Trinucleótidos
8.
Brain Res ; 853(1): 156-61, 2000 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-10627320

RESUMEN

In the previous study, we reported increased NOS expression in the astrocytes in the spinal cord of the transgenic mice that are used as ALS animal model. In the present study, we performed immunocytochemical studies to investigate the changes of nitrotyrosine-immunoreactivity in the brains of the transgenic mice, and demonstrated in vivo evidence of peroxynitrite-mediated oxidative damage in the pathogenesis of ALS. In the spinal cord of the transgenic mice, immunocytochemistry showed intensely stained nitrotyrosine-IR glial cells with the appearance of astrocytes, but no nitrotyrosine-IR glial cells were observed in the spinal cord of the control mice. In the transgenic mice, nitrotyrosine-IR neurons were observed in the hypoglossal nucleus, lateral reticular nucleus, medullary reticular formation and cerebellar nuclei. Interestingly, nitrotyrosine-IR neurons were observed in the hippocampal formation and septal area of the transgenic mice. In the hippocampus, nitrotyrosine-IR neurons in the CA1 region showed intense staining, and the immunoreactivity was localized mainly in the pyramidal cell layer. Recent studies have shown that antioxidants and selective neuronal NOS inhibitor increase survival in the SOD1 transgenic mouse model of FALS. It is possible that therapy with these agents may slow the neurodegenerative process in human ALS, perhaps through reduction of nitrotyrosine formation.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Superóxido Dismutasa/genética , Tirosina/análogos & derivados , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Transgénicos , Mutación , Neuroglía/metabolismo , Neuronas/metabolismo , Médula Espinal/metabolismo , Tirosina/metabolismo
9.
Brain Res ; 887(2): 309-15, 2000 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-11134620

RESUMEN

In the present study, we performed immunohistochemical studies to investigate the changes of Bcl-2 and Bax in the central nervous system of the transgenic mice expressing a human Cu/Zn SOD mutation. In contrast to the controls, a high density of Bcl-2-IR astrocytes were detected all around the gray matter of the spinal cord of the mutant transgenic mice. Bcl-2-IR astrocytes were also detected in the cerebellum and brainstem of transgenic mice. Specific immunoreactivity for Bax was seen in the spinal cord and brainstem of transgenic mice. Immunostaining for Bax was identified only in neurons and not in glial cells. Our present study demonstrated the distribution of Bcl-2 and Bax in detail using immunohistochemical methods through the central nervous system of the transgenic mice, for the first time.


Asunto(s)
Astrocitos/citología , Encéfalo/citología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Médula Espinal/citología , Superóxido Dismutasa/genética , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Transgénicos , Neuroglía/citología , Neuroglía/metabolismo , Especificidad de Órganos , Valores de Referencia , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismo , Proteína X Asociada a bcl-2
10.
Nature ; 402(6761): 533-7, 1999 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-10591213

RESUMEN

Mutations in the gene encoding the amyloid protein precursor (APP) cause autosomal dominant Alzheimer's disease. Cleavage of APP by unidentified proteases, referred to as beta- and gamma-secretases, generates the amyloid beta-peptide, the main component of the amyloid plaques found in Alzheimer's disease patients. The disease-causing mutations flank the protease cleavage sites in APP and facilitate its cleavage. Here we identify a new membrane-bound aspartyl protease (Asp2) with beta-secretase activity. The Asp2 gene is expressed widely in brain and other tissues. Decreasing the expression of Asp2 in cells reduces amyloid beta-peptide production and blocks the accumulation of the carboxy-terminal APP fragment that is created by beta-secretase cleavage. Solubilized Asp2 protein cleaves a synthetic APP peptide substrate at the beta-secretase site, and the rate of cleavage is increased tenfold by a mutation associated with early-onset Alzheimer's disease in Sweden. Thus, Asp2 is a new protein target for drugs that are designed to block the production of amyloid beta-peptide peptide and the consequent formation of amyloid plaque in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/genética , Células CHO , Caenorhabditis elegans , Línea Celular , Membrana Celular/enzimología , Cricetinae , Endopeptidasas , Inhibidores Enzimáticos/uso terapéutico , Humanos , Ratones , Datos de Secuencia Molecular , Mutación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Distribución Tisular , Transfección , Células Tumorales Cultivadas
11.
Neuroscience ; 90(4): 1483-92, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10338314

RESUMEN

A subset of familial cases of amyotrophic lateral sclerosis are linked to missense mutations in copper/zinc superoxide dismutase type 1. Patients with missense mutations in copper/zinc superoxide dismutase type 1 develop a paralytic disease indistinguishable from sporadic amyotrophic lateral sclerosis through an unknown toxic gain of function. Nitric oxide reacts with the superoxide anion to form the strong oxidant, peroxynitrite, which participates in neuronal injury in a variety of model systems. Peroxynitrite is an alternate substrate for copper/zinc superoxide dismutase type 1, causing catalytic nitration of tyrosine residues in other proteins. Mutations in copper/zinc superoxide dismutase type 1 may disrupt the active site of the enzyme and permit greater access of peroxynitrite to copper, leading to increased nitration by peroxynitrite of critical cellular targets. To investigate whether neuronal-derived nitric oxide plays a role in the pathogenesis of familial amyotrophic lateral sclerosis, we examined the effects of three different nitric oxide synthase inhibitors: a non-selective nitric oxide synthase inhibitor, nitro-L-arginine methyl ester; a relatively selective inhibitor of neuronal nitric oxide synthase, 7-nitroindazole; and a novel highly selective neuronal nitric oxide synthase inhibitor, AR-R 17,477, in transgenic mice expressing a familial amyotrophic lateral sclerosis-linked mutant human copper/zinc superoxide dismutase type 1 (Gly-->Ala at position 93; G93A) containing a high transgene copy number and a low transgene copy number. AR-R 17,477, but not nitro-L-arginine methyl ester or 7-nitroindazole, significantly prolonged survival in both the high and low transgene transgenic mice. To determine whether neuronal nitric oxide synthase is involved in the pathogenesis resulting from the familial amyotrophic lateral sclerosis copper/zinc superoxide dismutase type 1 mutation, we produced mice with the copper/zinc superoxide dismutase type 1 mutation which lack the neuronal nitric oxide synthase gene. The transgenic mice expressing a familial amyotrophic lateral sclerosis-linked mutant human copper/zinc superoxide dismutase type 1 on neuronal nitric oxide synthase null background do not live significantly longer than transgenic mice expressing a familial amyotrophic lateral sclerosis-linked mutant human copper/zinc superoxide dismutase type 1. Western blot analysis indicates the presence of two neuronal nitric oxide synthase-like immunoreactive bands in spinal cord homogenates of the neuronal nitric oxide synthase null mice, and residual neuronal nitric oxide synthase catalytic activity ( > 7%) is detected in the spinal cord of the transgenic mice expressing a familial amyotrophic lateral sclerosis-linked mutant human copper/zinc superoxide dismutase type 1 on neuronal nitric oxide synthase null background. This amount of residual activity probably does not account for lack of protection afforded by the disrupted neuronal nitric oxide synthase gene in the familial amyotrophic lateral sclerosis-linked mutant human copper/zinc superoxide dismutase type 1 mice. Immunological nitric oxide synthase is not detected in the copper/zinc superoxide dismutase type 1 mutant mice at several different ages, thus excluding immunological nitric oxide synthase as a contributor to the pathogenesis of familial amyotrophic lateral sclerosis. Levels of neuronal nitric oxide synthase as well as Ca2+-dependent nitric oxide synthase catalytic activity in the copper/zinc superoxide dismutase type 1 mutant mice do not differ from wild type mice. Endothelial nitric oxide synthase levels may be decreased in the copper/zinc superoxide dismutase type 1 mutant mice. Together, these results do not support a significant role for neuronal-derived nitric oxide in the pathogenesis of familial amyotrophic lateral sclerosis transgenic mice.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/genética , Óxido Nítrico Sintasa/fisiología , Amidinas/farmacología , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Catálisis , Inhibidores Enzimáticos/farmacología , Indazoles/farmacología , Isoenzimas/metabolismo , Ratones , Ratones Transgénicos/genética , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I , Fenotipo , Médula Espinal/enzimología
12.
Neuroreport ; 10(18): 3939-43, 1999 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-10716237

RESUMEN

In a previous study, we reported increased NOS expression in the astrocytes in the spinal cord of SOD mutant transgenic mice that are used as ALS animal model. Recently, Messmer and Brune suggested that nitric oxide-induced apoptosis is intimately related with p53-dependent signaling pathway, and de la Monte et al. reported increased p53-immunoreactivity in the spinal cord of ALS patients. In the present study, we performed immunocytochemical studies to investigate the changes of p53-immunoreactivity in the brains of the mutant transgenic mice expressing a human Cu/Zn SOD mutation. Immunocytochemistry showed intensely stained p53-IR glial cells with the appearance of astrocytes in all levels of the spinal cord of the mutant transgenic mice, but no p53-IR glial cells were observed in the spinal cord of the control mice. P53-IR astrocytes were also detected in the brain stem of the mutant transgenic mice. In the medulla, they were observed in the medullary reticular formation, hypoglossal nucleus, vestibular nucleus, dorsal motor nucleus of the vagus and nucleus ambiguus. In the pons, their presences were noted in the pontine reticular formation, and trigeminal and facial nuclei. In the midbrain, astrocytes were detected in the mesencephalic reticular formation, red nucleus and periaqueductal gray matter. In the cerebellum, intensely stained p53-IR astrocytes were detected in the intracerebellar nuclei. In contrast to the mutant transgenic mice, no p53-IR astrocytes were detected in the brain stem and spinal cord of the control mice. Further multidisciplinary investigations involving p53-mediated cellular damage and pathogenesis of ALS are needed to clarify the importance of these results.


Asunto(s)
Astrocitos/metabolismo , Mutación/fisiología , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Transgénicos/genética , Valores de Referencia , Médula Espinal/citología
13.
J Neurochem ; 71(5): 2041-8, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9798929

RESUMEN

The Gly93-->Ala mutation in the Cu,Zn superoxide dismutase (Cu,Zn-SOD) gene (SOD1) found in some familial amyotrophic lateral sclerosis (FALS) patients has been shown to result in an aberrant increase in hydroxyl radical production by the mutant enzyme that may cause oxidative injury to spinal motor neurons. In the present study, we analyzed the extent of oxidative injury to lumbar and cervical spinal cord proteins in transgenic FALS mice that overexpress the SOD1 mutation [TgN(SOD1-G93A)G1H] in comparison with nontransgenic mice. Total protein oxidation was examined by spectrophotometric measurement of tissue protein carbonyl content by the dinitrophenylhydrazine (DNPH) assay. Four ages were investigated: 30 (pre-motor neuron pathology and clinical disease), 60 (after initiation of pathology, but pre-disease), 100 (approximately 50% loss of motor neurons and function), and 120 (near complete hindlimb paralysis) days. Protein carbonyl content in 30-day-old TgN(SOD1-G93A)G1H mice was twice as high as the level found in age-matched nontransgenic mice. However, at 60 and 100 days of age, the levels were the same. Then, between 100 and 120 days of age, the levels in the TgN(SOD1-G93A)G1H mice increased dramatically (557%) compared with either the nontransgenic mice or transgenic animals that overexpress the wild-type human Cu,Zn-SOD [TgN(SOD1)N29]. The 100-120-day increase in spinal cord protein carbonyl levels was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoretic separation and western blot immunoassay, which enabled the identification of heavily oxidized individual proteins using a monoclonal antibody against DNPH-derivatized proteins. One of the more heavily oxidized protein bands (14 kDa) was identified by immunoprecipitation as largely Cu,Zn-SOD. Western blot comparison of the extent of Cu,Zn-SOD protein carbonylation revealed that the level in spinal cord samples from 120-day-old TgN(SOD1-G93A)G1H mice was significantly higher than that found in age-matched nontransgenic or TgN(SOD1)N29 mice. These results suggest that the increased hydroxyl radical production associated with the G93A SOD1 mutation and/or lipid peroxidation-derived radical species (peroxyl or alkoxyl) causes extensive protein oxidative injury and that the Cu,Zn-SOD itself is a key target, which may compromise its antioxidant function.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/metabolismo , Western Blotting , Femenino , Humanos , Región Lumbosacra , Masculino , Ratones , Ratones Transgénicos , Cuello , Oxidación-Reducción , Fenilhidrazinas/metabolismo , Pruebas de Precipitina , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismo
14.
Ann Neurol ; 44(5): 763-70, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9818932

RESUMEN

Mutations of the SOD1 gene encoding copper/zinc superoxide dismutase (CuZnSOD) cause an inherited form of amyotrophic lateral sclerosis. When expressed in transgenic mice, the same SOD1 mutations cause progressive loss of spinal motor neurons with consequent paralysis and death. In vitro biochemical studies indicate that SOD1 mutations enhance free radical generation by the mutant enzyme. We investigated those findings in vivo by using a novel, brain-permeable spin trap, azulenyl nitrone. Reaction of azulenyl nitrone with a free radical forms a nitroxide adduct that then fragments to yield the corresponding azulenyl aldehyde. Transgenic mice expressing mutant SOD1-G93A show enhanced free radical content in spinal cord but not brain. This correlates with tissue-specific differences in the level of transgene expression. In spinal cord, the increase in free radical content is in direct proportion to the age-dependent increase in mutant human CuZnSOD expression. This increase precedes motor neuron degeneration. The higher level of human CuZnSOD expression seen in spinal cord compared with brain, and consequent difference in free radical generation, provides a basis for understanding the selective vulnerability of the spinal cord in this disease model.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Encéfalo/enzimología , Mutación Puntual , Médula Espinal/enzimología , Superóxido Dismutasa/genética , Envejecimiento/metabolismo , Esclerosis Amiotrófica Lateral/enzimología , Animales , Azulenos , Encéfalo/crecimiento & desarrollo , Modelos Animales de Enfermedad , Radicales Libres/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Óxidos de Nitrógeno , Sesquiterpenos , Marcadores de Spin , Médula Espinal/crecimiento & desarrollo , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
15.
J Inherit Metab Dis ; 21(5): 587-97, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9728338

RESUMEN

CuZn superoxide dismutase (CuZn SOD) is one of several antioxidant enzymes that defend the cell against damage by oxygen free radicals. Mutations of the SOD1 gene encoding CuZn SOD are found in patients with familial amyotrophic lateral sclerosis (FALS), a progressive and fatal paralytic disease that is caused by the death of motor neurons in cortex, brainstem and spinal cord. The disease can be reproduced in transgenic mice by expression of mutant human CuZn SOD. Recent studies both in vitro and in vivo suggest that the effect of mutation is to enhance the generation of oxygen radicals by the mutant enzyme. Thus, mutation converts a protective, antioxidant enzyme into a destructive, prooxidant form that catalyses free radical damage to which motor neurons are selectively vulnerable. Recent studies of neuroprotective agents in the FALS model show that inhibition of oxidative mechanisms (copper chelation therapy, dietary antioxidants, and coexpression of bcl-2) delays disease onset but does not extend disease duration. In contrast, inhibition of glutamatergic or apoptotic mechanisms (riluzole, gabapentin, and coexpression of glutamatergic or apoptotic mechanisms (riluzole, gabapentin, and coexpression of an inhibitor of caspase-1) has no effect on disease onset but extends survival by increasing the duration of symptomatic disease. Thus, neuroprotective agents differentially target the processes underlying disease initiation and propagation.


Asunto(s)
Enfermedad de la Neurona Motora/enzimología , Enfermedad de la Neurona Motora/genética , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/genética , Animales , Humanos , Ratones , Ratones Transgénicos
16.
J Neurosci Res ; 53(1): 66-77, 1998 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-9670993

RESUMEN

Transgenic mice that overexpress a mutated human CuZn superoxide dismutase (SOD1) gene (gly93-->ala) found in some patients with familial ALS (FALS) have been shown to develop motor neuron disease, as evidenced by motor neuron loss in the lumbar and cervical spinal regions and a progressive loss of voluntary motor activity. The mutant Cu,Zn SOD exhibits essentially normal dismutase activity, but in addition, generates toxic oxygen radicals as a result of an enhancement of a normally minor peroxidase reaction. In view of the likelihood that the manifestation of motor neuron disease in the FALS transgenic mice involves an oxidative injury mechanism, the present study sought to examine the extent of lipid peroxidative damage in the spinal cords of the TgN(SOD1-G93A)G1H mice over their life span compared to nontransgenic littermates or transgenic mice that overexpress the wild-type human Cu,Zn SOD (TgN(SOD1)N29). Lipid peroxidation was investigated in terms of changes in vitamin E and malondialdehyde (MDA) levels measured by HPLC methods and by MDA-protein adduct immunoreactivity. Four ages were investigated: 30 days (pre-motor neuron pathology and clinical disease); 60 days (after initiation of pathology, but predisease); 100 days (approximately 50% loss of motor neurons and function); and 120 days (near complete hindlimb paralysis). Compared to nontransgenic mice, the TgN(SOD1-G93A)G1H mice showed blunted accumulation of spinal cord vitamin E and higher levels of MDA (P < 0.05 at 30 and 60 days) over the 30-120 day time span. In the TgN(SOD1)N29 mice, levels of MDA at age 120 days were significantly lower than in either the TgN(SOD1-G93A)G1H or nontransgenic mice. MDA-protein adduct immunoreactivity was also significantly increased in the lumbar spinal cord at age 30, 100, and 120 days, and in the cervical cord at 100 and 120 days. The results clearly demonstrate an increase in spinal cord lipid peroxidation in the FALS transgenic model, which precedes the onset of ultrastructural or clinical motor neuron disease. However, the greatest intensity of actual motor neuronal lipid peroxidative injury is associated with the active phase of disease progression. These findings further support a role of oxygen radical-mediated motor neuronal injury in the pathogenesis of FALS and the potential benefits of antioxidant therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Envejecimiento/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Progresión de la Enfermedad , Radicales Libres/metabolismo , Inmunohistoquímica , Malondialdehído/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Parálisis/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Vitamina E/metabolismo
17.
J Neuropathol Exp Neurol ; 57(6): 571-87, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9630237

RESUMEN

Transgenic mice with Cu,Zn superoxide dismutase (SOD-1) mutations provide a unique model to examine altered Ca homeostasis in selectively vulnerable and resistant motoneurons. In degenerating spinal motoneurons of G93 A SOD-1 mice, developing vacuoles were filled with calcium, while calcium was gradually depleted from the cytoplasm and intact mitochondria. In oculomotor neurons, no degenerative changes, vacuolization, or increased calcium were noted. Motor axon terminals of interosseus muscle gradually degenerated and intracellular calcium was depleted. Oculomotor terminals of mutant SOD-1 mice were smaller and exhibited no degenerative changes, but did exhibit unique membrane-enclosed organelles containing calcium. Spinal motoneurons of SOD-1 mice were shown to have fewer calcium binding proteins, such as parvalbumin, compared with oculomotor neurons. These data suggest that the SOD-1 mutation is associated with impaired calcium homeostasis in motoneurons in vivo, with increased likelihood of degeneration associated with higher levels of intracellular calcium and lower to absent levels of calbindin-D28K and/or parvalbumin, and decreased likelihood of degeneration associated with minimally changed calcium and ample calbindin-D28K and/or parvalbumin.


Asunto(s)
Calcio/metabolismo , Neuronas Motoras/enzimología , Degeneración Nerviosa/metabolismo , Superóxido Dismutasa/genética , Animales , Antimonio , Calcio/análisis , Histocitoquímica/métodos , Homeostasis/fisiología , Humanos , Ratones , Ratones Transgénicos , Microscopía Electrónica , Neuronas Motoras/química , Neuronas Motoras/ultraestructura , Músculo Esquelético/inervación , Mutagénesis/fisiología , Músculos Oculomotores/inervación , Nervio Oculomotor/química , Nervio Oculomotor/citología , Oxalatos , Parvalbúminas/análisis , Terminales Presinápticos/patología , Médula Espinal/química , Médula Espinal/patología , Vacuolas/ultraestructura
18.
Glia ; 23(3): 249-56, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9633809

RESUMEN

Transgenic mice that highly over-express a mutated human CuZn superoxide dismutase (SOD1) gene [gly93-->ala; TgN(SOD1-G93A)G1H line] found in some patients with familial ALS (FALS) have been shown to develop motor neuron disease that is characterized by motor neuron loss in the lumbar and cervical spinal regions and a progressive loss of motor activity. The mutant Cu,Zn SOD exhibits essentially normal SOD activity but also generates toxic oxygen radicals as a result of an enhancement of a normally minor peroxidase reaction. Consequently, lipid and protein oxidative damage to the spinal motor neurons occurs and is associated with disease onset and progression. In the present study, we investigated the time course of microglial (major histocompatibility-II antigen immunoreactivity) and astrocytic (glial fibrillary acidic protein immunoreactivity) activation in relation to the course of motor neuron disease in the TgN(SOD1-G93A)G1H FALS mice. Four ages were investigated: 30 days (pre-motor neuron pathology and clinical disease); 60 days (after initiation of pathology, but pre-disease); 100 days (approximately 50% loss of motor neurons and function); and 120 days (near complete hindlimb paralysis). Compared to non-transgenic littermates, the TgN(SOD1-G93A)G1H mice showed significantly increased numbers of activated astrocytes (P < 0.01) at 100 days of age in both the cervical and lumbar spinal cord regions. However, at 120 days of age, the activation lost statistical significance. In contrast, microglial activation was significantly increased several-fold at both 100 and 120 days. We hypothesize that astrocytic activation may exert a trophic influence on the motor neurons that is insufficiently maintained late in the course of the disease. On the other hand, the sustained, intense microglial activation may conceivably contribute to the oxidative stress and damage involved in the disease process. If true, then agents which inhibit microglia may help to limit disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Astrocitos/fisiología , Microglía/fisiología , Superóxido Dismutasa/genética , Factores de Edad , Esclerosis Amiotrófica Lateral/patología , Animales , Biomarcadores , Progresión de la Enfermedad , Proteína Ácida Fibrilar de la Glía/análisis , Antígenos de Histocompatibilidad Clase II/análisis , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Óxido Nítrico/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Médula Espinal/patología , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa-1 , Factores de Tiempo
19.
Neuroreport ; 9(7): 1503-6, 1998 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-9631456

RESUMEN

The distribution of the neuronal isoform of nitric oxide synthase (nNOS) in the spinal cord of transgenic mice expressing a mutated human copper/zinc superoxide dismutase gene was enhanced when investigated by immunocytochemistry. Immunocytochemistry showed intensely stained NOS-immunoreactive (IR) glial cells with the appearance of astrocytes in the spinal cord and brain stem of transgenic mice, but none were observed at these sites in control mice. Using antisera directed against GFAP, the specific marker for astrocyte, the glial cells were confirmed by immunocytochemistry to be astrocytes. This immunocytochemical evidence suggests that nitric oxide may mediate glutamate neurotoxicity, and this study provides the first in vivo evidence that nitric oxide may be implicated in the pathologic process of human familial amyotrophic lateral sclerosis.


Asunto(s)
Astrocitos/enzimología , Encéfalo/enzimología , Óxido Nítrico Sintasa/biosíntesis , Médula Espinal/enzimología , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Animales , Astrocitos/citología , Biomarcadores/análisis , Encéfalo/citología , Proteína Ácida Fibrilar de la Glía/análisis , Humanos , Inmunohistoquímica , Mesencéfalo/enzimología , Ratones , Ratones Mutantes , Ratones Transgénicos , Óxido Nítrico Sintasa/análisis , Óxido Nítrico Sintasa de Tipo I , Proteínas Recombinantes/biosíntesis , Formación Reticular/enzimología , Médula Espinal/citología
20.
Acta Neuropathol ; 95(2): 136-42, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9498047

RESUMEN

This investigation deals with the immunocytochemical localization of Cu/Zn superoxide dismutase (SOD) in the spinal cord neurons of transgenic mice that overexpress Gly93Ala mutant human Cu/Zn SOD and demonstrate clinicopathological features similar to human amyotrophic lateral sclerosis (ALS) with Cu/Zn SOD mutation. At low magnification of light microscopy, the gray and white matter of the spinal cord of Gly93Ala mice showed more intense Cu/Zn SOD immunoreactivity than that of control mice. At higher magnification, the cytoplasm of control mice neurons displayed a distinct staining for Cu/Zn SOD, whereas the surrounding neuropil was only weakly stained. In contrast, the intensity of Cu/Zn SOD immunoreactivity in the cytoplasm of the majority of Gly93Ala mice neurons was similar to that in the neuropil. Almost all neuronal hyaline inclusions (NHIs) of Gly93Ala mice were positively immunostained by antibodies to Cu/Zn SOD, ubiquitin and phosphorylated neurofilament protein (NFP), the intensities of which were much higher in the NHIs than in the surrounding cytoplasm. In control mice, significant Cu/Zn SOD precipitation was not observed to be limited to any particular region of the neuronal cytoplasm. Intracytoplasmic vacuoles in the neuronal soma and processes of Gly93Ala mice were not stained by any of these antibodies. These results indicate that Cu/Zn SOD colocalizes with ubiquitin and phosphorylated NFP in NHIs of mice expressing mutant Cu/Zn SOD; similar findings have been shown for Lewy body-like inclusions of familial ALS patients with Cu/Zn SOD mutation. Moreover, our results point to the possibility that Cu/Zn SOD mutation may have a role in the abnormal Cu/Zn SOD accumulation in the NHIs, in association with motor neuron degeneration.


Asunto(s)
Hialina/enzimología , Cuerpos de Inclusión/enzimología , Neuronas/enzimología , Médula Espinal/enzimología , Superóxido Dismutasa/biosíntesis , Animales , Humanos , Hialina/ultraestructura , Cuerpos de Inclusión/ultraestructura , Ratones , Ratones Endogámicos , Ratones Transgénicos , Neuronas/citología , Mutación Puntual , Médula Espinal/citología , Superóxido Dismutasa/análisis , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...