Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(12)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38526109

RESUMEN

Methoxymethanol (CH3OCH2OH) is a reactive C2 ether-alcohol that is formed by coupling events in both heterogeneous and homogeneous systems. It is found in complex reactive environments-for example those associated with catalytic reactors, combustion systems, and liquid-phase mixtures of oxygenates. Using tunable synchrotron-generated vacuum-ultraviolet photons between 10.0 and 11.5 eV, we report on the photoionization spectroscopy of methoxymethanol. We determine that the lowest-energy photoionization process is the dissociative ionization of methoxymethanol via H-atom loss to produce [C2H5O2]+, a fragment cation with a mass-to-charge ratio (m/z) = 61.029. We measure the appearance energy of this fragment ion to be 10.24 ± 0.05 eV. The parent cation is not detected in the energy range examined. To elucidate the origin of the m/z = 61.029 (C2H5O2) fragment, we used automated electronic structure calculations to identify key stationary points on the cation potential energy surface and compute conformer-specific microcanonical rate coefficients for the important unimolecular processes. The calculated H-atom dissociation pathway results in a [C2H5O2]+ fragment appearance at 10.21 eV, in excellent agreement with experimental results.

2.
J Phys Chem Lett ; 13(24): 5530-5537, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35695809

RESUMEN

Knowledge of the full phonon spectrum is essential to accurately calculate the dynamic disorder (σ) and hole mobility (µh) in organic semiconductors (OSCs). However, most vibrational spectroscopy techniques under-measure the phonons, thus limiting the phonon validation. Here, we measure and model the full phonon spectrum using multiple spectroscopic techniques and predict µh using σ from only the Γ-point and the full Brillouin zone (FBZ). We find that only inelastic neutron scattering (INS) provides validation of all phonon modes, and that σ in a set of small molecule semiconductors can be miscalculated by up to 28% when comparing Γ-point against FBZ calculations. A subsequent mode analysis shows that many modes contribute to σ and that no single mode dominates. Our results demonstrate the importance of a thoroughly validated phonon calculation, and a need to develop design rules considering the full spectrum of phonon modes.

3.
J Phys Chem Lett ; 12(46): 11252-11258, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34762803

RESUMEN

Catalytic conversion of alcohols underlies many commodity and fine chemical syntheses, but a complete mechanistic understanding is lacking. We examined catalytic oxidative conversion of methanol near atmospheric pressure using operando small-aperture molecular beam time-of-flight mass spectrometry, interrogating the gas phase 500 µm above Pd-based catalyst surfaces. In addition to a variety of stable C1-3 species, we detected methoxymethanol (CH3OCH2OH)─a rarely observed and reactive C2 oxygenate that has been proposed to be a critical intermediate in methyl formate production. Methoxymethanol is observed above Pd, AuxPdy alloys, and oxide-supported Pd (common methanol oxidation catalysts). Experiments establish temperature and reactant feed ratio dependences of methoxymethanol generation, and calculations using density functional theory are used to examine the energetics of its likely formation pathway. These results suggest that future development of catalysts and microkinetic models for methanol oxidation should be augmented and constrained to accommodate the formation, desorption, adsorption, and surface reactions involving methoxymethanol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...