Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 186: 125-134, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34246666

RESUMEN

Marine microorganisms are reported to produce polyhydroxybutyrate (PHB) that has wide range of medical and industrial applications with the advantage of biodegradability. PHBs are synthesized as an energy and carbon storage element under metabolic pressure. The scope of this work is enhancing PHB production using marine microbial isolate, Micrococcus luteus by selectively optimizing various growth conditions such as different media components and growth parameters that influence the cell growth and PHB production were sampled. Micrococcus luteus produced 7.54 g/L of PHB utilizing glucose as a carbon source and ammonium sulphate as a nitrogen source with maximum efficiency. The same optimized operational conditions were further employed in batch fermentation over a time span of 72 h. Interestingly higher cell dry weight of 21.52 g/L with PHB yield of 12.18 g/L and 56.59% polymer content was observed in batch fermentation studies at 64 h. The chemical nature of the extracted polymer was validated with physio-chemical experiments and was at par with the commercially available PHB. This study will spotlight M. luteus as a potential source for large-scale industrial production of PHB with reducing environmental pollutions.


Asunto(s)
Butiratos/metabolismo , Sedimentos Geológicos/microbiología , Hidroxibutiratos/aislamiento & purificación , Microbiología Industrial , Micrococcus luteus/metabolismo , Butiratos/química , Fermentación , Concentración de Iones de Hidrógeno , Micrococcus luteus/crecimiento & desarrollo , Estructura Molecular , Temperatura , Factores de Tiempo
2.
Chemosphere ; 280: 130608, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33962296

RESUMEN

Over the last century, contamination of polycyclic aromatic hydrocarbons (PAHs) has risen tremendously due to the intensified industrial activities like petrochemical, pharmaceutical, insecticides and fertilizers applications. PAHs are a group of organic pollutants with adverse effects on both humans and the environment. These PAHs are widely distributed in various ecosystems including air, soil, marine water and sediments. Degradation of PAHs generally occurs through processes like photolysis, adsorption, volatilization, chemical degradation and microbial degradation. Microbial degradation of PAHs is done by the utilization of diverse microorganisms like algae, bacteria, fungi which are readily compatible with biodegrading/bio transforming PAHs into H2O, CO2 under aerobic, or CH4 under anaerobic environment. The rate of PAHs degradation using microbes is mainly governed by various cultivation conditions like temperature, pH, nutrients availability, microbial population, chemical nature of PAHs, oxygen and degree of acclimation. Several microbial species including Selenastrum capricornutum, Ralstonia basilensis, Acinetobacter haemolyticus, Pseudomonas migulae, Sphingomonas yanoikuyae and Chlorella sorokiniana are known to degrade PAHs via biosorption and enzyme-mediated degradation. Numerous bacterial mediated PAHs degradation methods are studied globally. Among them, PAHs degradation by bacterial species like Pseudomonas fluorescence, Pseudomonas aeruginosa, Rhodococcus spp., Paenibacillus spp., Mycobacterium spp., and Haemophilus spp., by various degradation modes like biosurfactant, bioaugmentation, biostimulation and biofilms mediated are also investigated. In contrarily, PAHs degradation by fungal species such as Pleurotus ostreatus, Polyporus sulphureus, Fusarium oxysporum occurs using the activity of its ligninolytic enzymes such as lignin peroxidase, laccase, and manganese peroxidase. The present review highlighted on the PAHs degradation activity by the algal, fungal, bacterial species and also focused on their mode of degradation.


Asunto(s)
Chlorella , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Acinetobacter , Biodegradación Ambiental , Cupriavidus , Ecosistema , Fusarium , Humanos , Pseudomonas , Microbiología del Suelo , Sphingomonadaceae
3.
Environ Pollut ; 275: 116035, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33581631

RESUMEN

Extracellular Polymeric Substances (EPS) influenced Poly Cyclic Aromatic Hydrocarbons (PAHs) degrading Klebsiella pneumoniae was isolated from the marine environment. To increase the EPS production by Klebsiella pneumoniae, several physicochemical parameters were tweaked such as different carbon sources (arabinose, glucose, glycerol, lactose, lactic acid, mannitol, sodium acetate, starch, and sucrose at 20 g/L), nitrogen sources (ammonium chloride, ammonium sulphate, glycine, potassium nitrate, protease peptone and urea at 2 g/L), different pH, carbon/nitrogen ratio, temperature, and salt concentration were examined. Maximum EPS growth and biodegradation of Anthracene (74.31%), Acenaphthene (67.28%), Fluorene (62.48%), Naphthalene (57.84%), and mixed PAHs (55.85%) were obtained using optimized conditions such as glucose (10 g/L) as carbon source, potassium nitrate (2 g/L) as the nitrogen source at pH 8, growth temperature of 37 °C, 3% NaCl concentration and 72 h incubation period. The Klebsiella pneumoniae biofilm architecture was studied by confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM). The present study demonstrates the EPS influenced PAHs degradation of Klebsiella pneumoniae.


Asunto(s)
Hidrocarburos Aromáticos , Hidrocarburos Policíclicos Aromáticos , Biodegradación Ambiental , Matriz Extracelular de Sustancias Poliméricas , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...