Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37765615

RESUMEN

It is crucial to find an effective, environmentally acceptable solution, such as bioplastics or biodegradable plastics, to the world's rising plastics demand and the resulting ecological destruction. This study has focused on the environmentally friendly production of bioplastic samples derived from corn starch, rice starch, and tapioca starch, with various calcium carbonate filler concentrations as binders. Two different plasticizers, glycerol and sorbitol, were employed singly and in a rich blend. To test the differences in the physical and chemical properties (water content, absorption of moisture, water solubility, dissolution rate in alcohol, biodegradation in soil, tensile strength, elastic modulus, and FT-IR) of the produced samples, nine samples from each of the three types of bioplastics were produced using various ratios and blends of the fillers and plasticizers. The produced bioplastic samples have a multitude of features that make them appropriate for a variety of applications. The test results show that the starch-based bioplastics that have been suggested would be a better alternative material to be used in the packaging sectors.

2.
Polymers (Basel) ; 14(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893937

RESUMEN

Current global trends demand the replacement of synthetic fibres with natural fibres in polymeric composites. The present work makes use of Prosopis juliflora, a plant that is a threat to the environment as a partial replacement in a hybrid composite. Individual Prosopis juliflora fibres are added to matrices at ratios of 12, 6, 9 and 8 wt % and glass fibres are added discretely at ratios of 28, 24, 21 and 32 wt % into matrices as well. The composites are prepared with four different combinations and tested in terms of the mechanical benefits and water absorption performance. This work exploits the mechanical advantage of impact energy in addition to producing Prosopis juliflora particles, fibre glass mats, and resin appropriate for structural uses. Water absorption tests are conducted for four different compositions. Among the four samples, sample 3 (9 wt % Prosopis juliflora fibres and 21 wt % glass fibres) has a higher rate of water absorption than the others, although sample 2 (6 wt % Prosopis juliflora fibres and 24 wt % glass fibres) has a lower rate. The difference in the quantity of water absorption between the hybrid composites can be attributed to the weight percentage of fibres. On the other hand, sample 1 (12 wt % Prosopis juliflora fibres and 28 wt % glass fibres) is reported to have absorbed 2.6 J of energy in the impact strength test. The increase in impact strength is attributed to the increase in the weight percentage of glass fibres. A scanning electron microscope is employed to study the fractured surfaces of the composites. This study shows that the developed hybrid composite could be employed in structural and automotive applications because of its improved impact strength and water resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...