Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37109841

RESUMEN

The construction industry is on the lookout for cost-effective structural members that are also environmentally friendly. Built-up cold-formed steel (CFS) sections with minimal thickness can be used to make beams at a lower cost. Plate buckling in CFS beams with thin webs can be avoided by using thick webs, adding stiffeners, or strengthening the web with diagonal rebars. When CFS beams are designed to carry heavy loads, their depth logically increases, resulting in an increase in building floor height. The experimental and numerical investigation of CFS composite beams reinforced with diagonal web rebars is presented in this paper. A total of twelve built-up CFS beams were used for testing, with the first six designed without web encasement and the remaining six designed with web encasement. The first six were constructed with diagonal rebars in the shear and flexure zones, while the other two with diagonal rebars in the shear zone, and the last two without diagonal rebars. The next set of six beams was constructed in the same manner, but with a concrete encasement of the web, and all the beams were then tested. Fly ash, a pozzolanic waste byproduct of thermal power plants, was used as a 40% replacement for cement in making the test specimens. CFS beam failure characteristics, load-deflection behavior, ductility, load-strain relationship, moment-curvature relationship, and lateral stiffness were all investigated. The results of the experimental tests and the nonlinear finite element analysis performed in ANSYS software were found to be in good agreement. It was discovered that CFS beams with fly ash concrete encased webs have twice the moment resisting capacity of plain CFS beams, resulting in a reduction in building floor height. The results also confirmed that the composite CFS beams have high ductility, making them a reliable choice for earthquake-resistant structures.

2.
Materials (Basel) ; 15(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36556605

RESUMEN

The increase in the population creates an increased demand for construction activities with eco-friendly, sustainable, and high-performance materials. Insulated concrete form (ICF) is an emerging technology that satisfies the sustainability demands of the construction sector. ICF is a composite material (a combination of expanded polystyrene (EPS) and geopolymer concrete (GPC)) that enhances the performance of concrete (such as thermal insulation and mechanical properties). To investigate the axial strength performance, five different types of prototypes were created and tested. Type I (without reinforcement): (a) hollow EPS without concrete, (b) alternative cells of EPS filled with concrete, (c) and all the cells of EPS filled with concrete; and Type II (with reinforcement): (d) alternative cells of EPS filled with concrete; (e) and all the cells of EPS filled with concrete. Amongst all the five prototypes, two grades of GPC were employed. M15 and M20 grades are used to examine the effectiveness in terms of cost. For comparing the test results, a reference masonry unit was constructed with conventional clay bricks. The main aim of the investigation is to examine the physical and mechanical performance of sandwich-type ICFs. The presence of polystyrene in ICF changes the failure pattern from brittle to ductile. The result from the study reveals that the Type II prototype, i.e., the specimen with all the cells of EPS filled with concrete and reinforcement, possesses a maximum load-carrying capacity greater than the reference masonry unit. Therefore, the proposed ICF is recommended to replace the conventional load-bearing system and non-load-bearing walls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...