Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 18: 1362567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680450

RESUMEN

Handwritten character recognition is one of the classical problems in the field of image classification. Supervised learning techniques using deep learning models are highly effective in their application to handwritten character recognition. However, they require a large dataset of labeled samples to achieve good accuracies. Recent supervised learning techniques for Kannada handwritten character recognition have state of the art accuracy and perform well over a large range of input variations. In this work, a framework is proposed for the Kannada language that incorporates techniques from semi-supervised learning. The framework uses features extracted from a convolutional neural network backbone and uses regularization to improve the trained features and label propagation to classify previously unseen characters. The episodic learning framework is used to validate the framework. Twenty-four classes are used for pre-training, 12 classes are used for testing and 11 classes are used for validation. Fine-tuning is tested using one example per unseen class and five examples per unseen class. Through experimentation the components of the network are implemented in Python using the Pytorch library. It is shown that the accuracy obtained 99.13% make this framework competitive with the currently available supervised learning counterparts, despite the large reduction in the number of labeled samples available for the novel classes.

2.
Sensors (Basel) ; 23(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36772333

RESUMEN

The amount of road accidents caused by driver drowsiness is one of the world's major challenges. These accidents lead to numerous fatal and non-fatal injuries which impose substantial financial strain on individuals and governments every year. As a result, it is critical to prevent catastrophic accidents and reduce the financial burden on society caused by driver drowsiness. The research community has primarily focused on two approaches to identify driver drowsiness during the last decade: intrusive and non-intrusive. The intrusive approach includes physiological measures, and the non-intrusive approach includes vehicle-based and behavioral measures. In an intrusive approach, sensors are used to detect driver drowsiness by placing them on the driver's body, whereas in a non-intrusive approach, a camera is used for drowsiness detection by identifying yawning patterns, eyelid movement and head inclination. Noticeably, most research has been conducted in driver drowsiness detection methods using only single measures that failed to produce good outcomes. Furthermore, these measures were only functional in certain conditions. This paper proposes a model that combines the two approaches, non-intrusive and intrusive, to detect driver drowsiness. Behavioral measures as a non-intrusive approach and sensor-based physiological measures as an intrusive approach are combined to detect driver drowsiness. The proposed hybrid model uses AI-based Multi-Task Cascaded Convolutional Neural Networks (MTCNN) as a behavioral measure to recognize the driver's facial features, and the Galvanic Skin Response (GSR) sensor as a physiological measure to collect the skin conductance of the driver that helps to increase the overall accuracy. Furthermore, the model's efficacy has been computed in a simulated environment. The outcome shows that the proposed hybrid model is capable of identifying the transition from awake to a drowsy state in the driver in all conditions with the efficacy of 91%.


Asunto(s)
Conducción de Automóvil , Vigilia , Humanos , Vigilia/fisiología , Accidentes de Tránsito/prevención & control , Redes Neurales de la Computación , Respuesta Galvánica de la Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA