Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1462, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927854

RESUMEN

Protection from viral infections depends on immunoglobulin isotype switching, which endows antibodies with effector functions. Here, we find that the protein kinase DYRK1A is essential for B cell-mediated protection from viral infection and effective vaccination through regulation of class switch recombination (CSR). Dyrk1a-deficient B cells are impaired in CSR activity in vivo and in vitro. Phosphoproteomic screens and kinase-activity assays identify MSH6, a DNA mismatch repair protein, as a direct substrate for DYRK1A, and deletion of a single phosphorylation site impaired CSR. After CSR and germinal center (GC) seeding, DYRK1A is required for attenuation of B cell proliferation. These findings demonstrate DYRK1A-mediated biological mechanisms of B cell immune responses that may be used for therapeutic manipulation in antibody-mediated autoimmunity.


Asunto(s)
Linfocitos B , Cambio de Clase de Inmunoglobulina , Fosforilación , Cambio de Clase de Inmunoglobulina/genética , Centro Germinal , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
2.
J Am Chem Soc ; 145(6): 3346-3360, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738297

RESUMEN

Electrophiles for covalent inhibitors that are suitable for in vivo administration are rare. While acrylamides are prevalent in FDA-approved covalent drugs, chloroacetamides are considered too reactive for such purposes. We report sulfamate-based electrophiles that maintain chloroacetamide-like geometry with tunable reactivity. In the context of the BTK inhibitor ibrutinib, sulfamate analogues showed low reactivity with comparable potency in protein labeling, in vitro, and cellular kinase activity assays and were effective in a mouse model of CLL. In a second example, we converted a chloroacetamide Pin1 inhibitor to a potent and selective sulfamate acetamide with improved buffer stability. Finally, we show that sulfamate acetamides can be used for covalent ligand-directed release (CoLDR) chemistry, both for the generation of "turn-on" probes as well as for traceless ligand-directed site-specific labeling of proteins. Taken together, this chemistry represents a promising addition to the list of electrophiles suitable for in vivo covalent targeting.


Asunto(s)
Acetamidas , Inhibidores de Proteínas Quinasas , Ratones , Animales , Ligandos , Inhibidores de Proteínas Quinasas/farmacología
3.
J Exp Med ; 220(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36705667

RESUMEN

Antibody affinity maturation depends on the formation of germinal centers (GCs) in lymph nodes. This process generates a massive number of apoptotic B cells, which are removed by a specialized subset of phagocytes, known as tingible body macrophages (TBMs). Although defects in these cells are associated with pathological conditions, the identity of their precursors and the dynamics of dying GC B cell disposal remained unknown. Here, we demonstrate that TBMs originate from pre-existing lymph node-resident precursors that enter the lymph node follicles in a GC-dependent manner. Intravital imaging shows that TBMs are stationary cells that selectively phagocytose GC B cells via highly dynamic protrusions and accommodate the final stages of B cell apoptosis. Cell-specific depletion and chimeric mouse models revealed that GC B cells drive TBM formation from bone marrow-derived precursors stationed within lymphoid organs prior to the immune challenge. Understanding TBM dynamics and function may explain the emergence of various antibody-mediated autoimmune conditions.


Asunto(s)
Ganglios Linfáticos , Macrófagos , Ratones , Animales , Ganglios Linfáticos/patología , Centro Germinal , Linfocitos B , Dendritas
4.
J Am Chem Soc ; 143(48): 20095-20108, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34817989

RESUMEN

Chemical modifications of native proteins can affect their stability, activity, interactions, localization, and more. However, there are few nongenetic methods for the installation of chemical modifications at a specific protein site in cells. Here we report a covalent ligand directed release (CoLDR) site-specific labeling strategy, which enables the installation of a variety of functional tags on a target protein while releasing the directing ligand. Using this approach, we were able to label various proteins such as BTK, K-RasG12C, and SARS-CoV-2 PLpro with different tags. For BTK we have shown selective labeling in cells of both alkyne and fluorophores tags. Protein labeling by traditional affinity methods often inhibits protein activity since the directing ligand permanently occupies the target binding pocket. We have shown that using CoLDR chemistry, modification of BTK by these probes in cells preserves its activity. We demonstrated several applications for this approach including determining the half-life of BTK in its native environment with minimal perturbation, as well as quantification of BTK degradation by a noncovalent proteolysis targeting chimera (PROTAC) by in-gel fluorescence. Using an environment-sensitive "turn-on" fluorescent probe, we were able to monitor ligand binding to the active site of BTK. Finally, we have demonstrated efficient CoLDR-based BTK PROTACs (DC50 < 100 nM), which installed a CRBN binder onto BTK. This approach joins very few available labeling strategies that maintain the target protein activity and thus makes an important addition to the toolbox of chemical biology.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/química , Colorantes Fluorescentes/química , Ligandos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Adenina/análogos & derivados , Adenina/química , Adenina/metabolismo , Agammaglobulinemia Tirosina Quinasa/metabolismo , Dominio Catalítico , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Semivida , Humanos , Piperidinas/química , Piperidinas/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , SARS-CoV-2/enzimología
5.
J Am Chem Soc ; 143(13): 4979-4992, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33761747

RESUMEN

Targeted covalent inhibitors are an important class of drugs and chemical probes. However, relatively few electrophiles meet the criteria for successful covalent inhibitor design. Here we describe α-substituted methacrylamides as a new class of electrophiles suitable for targeted covalent inhibitors. While typically α-substitutions inactivate acrylamides, we show that hetero α-substituted methacrylamides have higher thiol reactivity and undergo a conjugated addition-elimination reaction ultimately releasing the substituent. Their reactivity toward thiols is tunable and correlates with the pKa/pKb of the leaving group. In the context of the BTK inhibitor ibrutinib, these electrophiles showed lower intrinsic thiol reactivity than the unsubstituted ibrutinib acrylamide. This translated to comparable potency in protein labeling, in vitro kinase assays, and functional cellular assays, with improved selectivity. The conjugate addition-elimination reaction upon covalent binding to their target cysteine allows functionalizing α-substituted methacrylamides as turn-on probes. To demonstrate this, we prepared covalent ligand directed release (CoLDR) turn-on fluorescent probes for BTK, EGFR, and K-RasG12C. We further demonstrate a BTK CoLDR chemiluminescent probe that enabled a high-throughput screen for BTK inhibitors. Altogether we show that α-substituted methacrylamides represent a new and versatile addition to the toolbox of targeted covalent inhibitor design.

7.
J Am Chem Soc ; 142(27): 11734-11742, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32369353

RESUMEN

Proteolysis targeting chimeras (PROTACs) represent an exciting inhibitory modality with many advantages, including substoichiometric degradation of targets. Their scope, though, is still limited to date by the requirement for a sufficiently potent target binder. A solution that proved useful in tackling challenging targets is the use of electrophiles to allow irreversible binding to the target. However, such binding will negate the catalytic nature of PROTACs. Reversible covalent PROTACs potentially offer the best of both worlds. They possess the potency and selectivity associated with the formation of the covalent bond, while being able to dissociate and regenerate once the protein target is degraded. Using Bruton's tyrosine kinase (BTK) as a clinically relevant model system, we show efficient degradation by noncovalent, irreversible covalent, and reversible covalent PROTACs, with <10 nM DC50's and >85% degradation. Our data suggest that part of the degradation by our irreversible covalent PROTACs is driven by reversible binding prior to covalent bond formation, while the reversible covalent PROTACs drive degradation primarily by covalent engagement. The PROTACs showed enhanced inhibition of B cell activation compared to ibrutinib and exhibit potent degradation of BTK in patient-derived primary chronic lymphocytic leukemia cells. The most potent reversible covalent PROTAC, RC-3, exhibited enhanced selectivity toward BTK compared to noncovalent and irreversible covalent PROTACs. These compounds may pave the way for the design of covalent PROTACs for a wide variety of challenging targets.

8.
Cell Death Dis ; 9(11): 1116, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389906

RESUMEN

Apoptotic cells expose Phosphatidylserine (PS), that serves as an "eat me" signal for engulfing cells. Previous studies have shown that PS also marks degenerating axonsduring developmental pruning or in response to insults (Wallerian degeneration), but the pathways that control PS exposure on degenerating axons are largely unknown. Here, we used a series of in vitro assays to systematically explore the regulation of PS exposure during axonal degeneration. Our results show that PS exposure is regulated by the upstream activators of axonal pruning and Wallerian degeneration. However, our investigation of signaling further downstream revealed divergence between axon degeneration and PS exposure. Importantly, elevation of the axonal energetic status hindered PS exposure, while inhibition of mitochondrial activity caused PS exposure, without degeneration. Overall, our results suggest that the levels of PS on the outer axonal membrane can be dissociated from the degeneration process and that the axonal energetic status plays a key role in the regulation of PS exposure.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Fosfatidilserinas/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Degeneración Walleriana/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas del Dominio Armadillo/deficiencia , Proteínas del Dominio Armadillo/genética , Axotomía , Biomarcadores/metabolismo , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Embrión de Mamíferos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Expresión Génica , Ratones , Ratones Noqueados , Técnicas Analíticas Microfluídicas , Factor de Crecimiento Nervioso/farmacología , Plasticidad Neuronal/genética , Fosfatidilserinas/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Técnicas de Cultivo de Tejidos , Vincristina/farmacología , Degeneración Walleriana/genética , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...