Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 86(9): 6111-6125, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33843224

RESUMEN

Substituted 2,6-dicyanoanilines are versatile electron donor-acceptor compounds, which have recently received considerable attention, since they exhibit strong fluorescence and may have utility in the synthesis of fluorescent materials, non-natural photosynthetic systems, and materials with nonlinear optical properties. The majority of known synthetic procedures are, however, "stop-and-go" reaction processes involving time-consuming and waste-producing isolation and purification of product intermediates. Here, we present the synthesis of substituted 2,6-dicyanoanilines via atom-economical and eco-friendly one-pot processes, involving metal-free domino reactions, and their subsequent photochemical and photophysical measurements and theoretical calculations. These studies exhibit the existence of an easily tunable radical ion pair-based charge-transfer (CT) emission in the synthesized 2,6-dicyanoaniline-based electron donor-acceptor systems. The charge-transfer processes were explored by photochemical and radiation chemical measurements, in particular, based on femtosecond laser photolysis transient absorption spectroscopy and time-resolved emission spectroscopy, accompanied by pulse radiolysis and complemented by quantum chemical investigations employing time-dependent density-functional theory. This chromophore class exhibits a broad-wavelength-range fine-tunable charge recombination emission with high photoluminescence quantum yields up to 0.98. Together with its rather simple and cost-effective synthesis (using easily available starting materials) and customizable properties, it renders this class of compounds feasible candidates as potential dyes for future optoelectronic devices like organic light-emitting diodes (OLEDs).

2.
Chemistry ; 25(16): 4062-4066, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30620121

RESUMEN

Air and visible light have been used in facile direct C-H oxidation of cyclic tertiary amines at ambient conditions, employing organic dyes as photocatalysts and LED. Tolerance of this new environmentally compatible protocol to various side-chain derivatizations of tryptoline and tetrahydroisoquinoline substrates was demonstrated. The developed method provides a straightforward and sustainable route towards δ-lactams, which feature strong antiviral properties (EC50 down to 4.6±1.8 µm) against human cytomegalovirus (HCMV). The clear advantages, which are easily available and inexpensive reagents, organic dyes, visible light, air/O2 and atom efficiency, make this system highly appealing for synthesis of versatile Strychnocarpine alkaloid derivatives with antiviral activity.


Asunto(s)
Alcaloides/farmacología , Aminas/química , Antivirales/farmacología , Citomegalovirus/efectos de los fármacos , Strychnos/química , Carbolinas/química , Radicales Libres/química , Luz , Estructura Molecular , Oxidación-Reducción , Oxígeno/química , Procesos Fotoquímicos , Tetrahidroisoquinolinas/química
3.
Nat Commun ; 8: 15071, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28462939

RESUMEN

Most of the known approved drugs comprise functionalized heterocyclic compounds as subunits. Among them, non-fluorescent quinazolines with four different substitution patterns are found in a variety of clinically used pharmaceuticals, while 4,5,7,8-substituted quinazolines and those displaying their own specific fluorescence, favourable for cellular uptake visualization, have not been described so far. Here we report the development of a one-pot synthetic strategy to access these 4,5,7,8-substituted quinazolines, which are fluorescent and feature strong antiviral properties (EC50 down to 0.6±0.1 µM) against human cytomegalovirus (HCMV). Merging multistep domino processes in one-pot under fully metal-free conditions leads to sustainable, maximum efficient and high-yielding organic synthesis. Furthermore, generation of artesunic acid-quinazoline hybrids and their application against HCMV (EC50 down to 0.1±0.0 µM) is demonstrated. Fluorescence of new antiviral hybrids and quinazolines has potential applications in molecular imaging in drug development and mechanistic studies, avoiding requirement of linkage to external fluorescent markers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA