Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Isotopes Environ Health Stud ; 56(1): 51-68, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31865768

RESUMEN

Comparing two different techniques applied for the extraction of marine pore water samples from sediments, the well-established whole round (WR) method and the more recent Rhizon method, in terms of their effects on stable calcium isotope ratios in extracted pore waters, we recognize a systematic offset between the two sampling methods. Higher δ44/40Ca values are associated with lower Ca concentrations for the Rhizon sampling technique and lower δ44/40Ca values are associated with higher Ca concentrations for the corresponding WR-derived pore water samples. Models involving Rayleigh fractionation and mixing calculation suggest that the observed offset is most likely caused by a combined process of CaCO3 precipitation and ion exchange taking place during Rhizon sampling-induced CO2 degassing. Changing pressure, extraction time or extraction yield during WR pressing does not lead to a variation in δ44/40Ca, indicating that no Ca isotope fractionation takes place during the sampling of pore water. On the basis of analytical and modelling results, WR samples appear to provide δ44/40Ca values that are more representative of the 'true' pore water isotopic composition. While the difference between the sampling techniques is close to the present-day analytical precision of Ca isotope analysis, it may become more relevant with increasing analytical precision in the future.


Asunto(s)
Isótopos de Calcio/análisis , Calcio/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Agua de Mar/química , Dióxido de Carbono/análisis , Fraccionamiento Químico , Modelos Teóricos
2.
Geochim Cosmochim Acta ; 263: 215-234, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33353988

RESUMEN

Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials that provide crucial information about the isotopic reservoirs present in the early Solar System. For a variety of elements, CAIs have isotope compositions that are uniform yet distinct from later formed solid material. However, despite being the most abundant metal in the Solar System, the isotopic composition of Fe in CAIs is not well constrained. In an attempt to determine the Fe isotopic compositions of CAIs, we combine extensive work from a previously studied CAI sample set with new isotopic work characterizing mass-dependent and mass-independent (nucleosynthetic) signatures in Mg, Ca, and Fe. This investigation includes work on three mineral separates of the Allende CAI Egg 2. For all isotope systems investigated, we find that in general, fine-grained CAIs exhibit light mass-dependent isotopic signatures relative to terrestrial standards, whereas igneous CAIs have heavier isotopic compositions relative to the fine-grained CAIs. Importantly, the mass-dependent Fe isotope signatures of bulk CAIs show a range of both light (fine-grained CAIs) and heavy (igneous CAIs) isotopic signatures relative to bulk chondrites, suggesting that Fe isotope signatures in CAIs largely derive from mass fractionation events such as condensation and evaporation occurring in the nebula. Such signatures show that a significant portion of the secondary alteration experienced by CAIs, particularly prevalent in fine-grained inclusions, occurred in the nebula prior to accretion into their respective parent bodies. Regarding nucleosynthetic Fe isotope signatures, we do not observe any variation outside of analytical uncertainty in bulk CAIs compared to terrestrial standards. In contrast, all three Egg 2 mineral separates display resolved mass-independent excesses in 56Fe compared to terrestrial standards. Furthermore, we find that the combined mass-dependent and nucleosynthetic Fe isotopic compositions of the Egg 2 mineral separates are well correlated, likely indicating that Fe indigenous to the CAI is mixed with less anomalous Fe, presumably from the solar nebula. Thus, these reported nucleosynthetic anomalies may point in the direction of the original Fe isotope composition of the CAI-forming region, but they likely only provide a minimum isotopic difference between the original mass-independent Fe isotopic composition of CAIs and that of later formed solids.

3.
Isotopes Environ Health Stud ; 50(1): 1-17, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24437731

RESUMEN

Understanding cation exchange processes is important for evaluating early diagenetic and synsedimentary processes taking place in marine sediments. To quantify calcium (Ca) exchange and Ca-ammonium exchange in a seawater environment, we performed experiments with a radioactive (45)Ca tracer on clay mineral standards (Fithian illite, montmorillonite and kaolinite) and marine sediments from the North Atlantic Integrated Ocean Drilling Program Site U1306A in artificial seawater (ASW). The results show that equilibrium during the initial attachment of Ca as well as the exchange of Ca by [Formula: see text] is attained in less than 2 min. On average 8-20% of the exchangeable sites of the clay minerals were occupied by Ca in a seawater medium. The conditional selectivity coefficient, describing the [Formula: see text] exchange in ASW is mineral specific and it was determined to be 0.07 for montmorillonite, 0.05 for a natural marine sediment and 0.013 for Fithian illite.


Asunto(s)
Silicatos de Aluminio/química , Compuestos de Amonio/química , Radioisótopos de Calcio/análisis , Sedimentos Geológicos , Agua de Mar/análisis , Bentonita/química , Arcilla , Caolín/química , Agua de Mar/química
4.
Nature ; 488(7413): 609-14, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22932385

RESUMEN

Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.


Asunto(s)
Altitud , Carbonato de Calcio/análisis , Ciclo del Carbono , Agua de Mar/química , Atmósfera/química , Dióxido de Carbono/análisis , Diatomeas/metabolismo , Foraminíferos/metabolismo , Sedimentos Geológicos/química , Calentamiento Global/historia , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XXI , Historia Antigua , Biología Marina , Oxígeno/metabolismo , Océano Pacífico , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA