Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 21(23): 10122-10126, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34792368

RESUMEN

Quantum computers can potentially achieve an exponential speedup versus classical computers on certain computational tasks, recently demonstrated in superconducting qubit processors. However, the capacitor electrodes that comprise these qubits must be large in order to avoid lossy dielectrics. This tactic hinders scaling by increasing parasitic coupling among circuit components, degrading individual qubit addressability, and limiting the spatial density of qubits. Here, we take advantage of the unique properties of van der Waals (vdW) materials to reduce the qubit area by >1000 times while preserving the capacitance while maintaining quantum coherence. Our qubits combine conventional aluminum-based Josephson junctions with parallel-plate capacitors composed of crystalline layers of superconducting niobium diselenide and insulating hexagonal boron nitride. We measure a vdW transmon T1 relaxation time of 1.06 µs, demonstrating a path to achieve high-qubit-density quantum processors with long coherence times, and the broad utility of layered heterostructures in low-loss, high-coherence quantum devices.

2.
J Phys Condens Matter ; 34(10)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34847535

RESUMEN

Ultra low-loss microwave materials are crucial for enhancing quantum coherence and scalability of superconducting qubits. Van der Waals (vdW) heterostructure is an attractive platform for quantum devices due to the single-crystal structure of the constituent two-dimensional (2D) layered materials and the lack of dangling bonds at their atomically sharp interfaces. However, new fabrication and characterization techniques are required to determine whether these structures can achieve low loss in the microwave regime. Here we report the fabrication of superconducting microwave resonators using NbSe2that achieve a quality factorQ> 105. This value sets an upper bound that corresponds to a resistance of⩽192µΩwhen considering the additional loss introduced by integrating NbSe2into a standard transmon circuit. This work demonstrates the compatibility of 2D layered materials with high-quality microwave quantum devices.

3.
Nat Nanotechnol ; 15(7): 569-573, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32632320

RESUMEN

Monolayer semiconducting transition-metal dichalcogenides (TMDs) represent a unique class of two-dimensional (2D) electron systems. Their atomically thin structure facilitates gate tunability just like graphene does, but unlike graphene, TMDs have the advantage of a sizable band gap and strong spin-orbit coupling. Measurements under large magnetic fields have revealed an unusual Landau level (LL) structure1-3, distinct from other 2D electron systems. However, owing to the limited sample quality and poor electrical contact, probing the lowest LLs has been challenging, and observation of electron correlations within the fractionally filled LL regime has not been possible. Here, through bulk electronic compressibility measurements, we investigate the LL structure of monolayer WSe2 in the extreme quantum limit, and observe fractional quantum Hall states in the lowest three LLs. The odd-denominator fractional quantum Hall sequences demonstrate a systematic evolution with the LL orbital index, consistent with generic theoretical expectations. In addition, we observe an even-denominator state in the second LL that is expected to host non-Abelian statistics. Our results suggest that the 2D semiconductors can provide an experimental platform that closely resembles idealized theoretical models in the quantum Hall regime.

4.
Sci Rep ; 10(1): 248, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937815

RESUMEN

One of the most challenging obstacles to realizing exascale computing is minimizing the energy consumption of L2 cache, main memory, and interconnects to that memory. For promising cryogenic computing schemes utilizing Josephson junction superconducting logic, this obstacle is exacerbated by the cryogenic system requirements that expose the technology's lack of high-density, high-speed and power-efficient memory. Here we demonstrate an array of cryogenic memory cells consisting of a non-volatile three-terminal magnetic tunnel junction element driven by the spin Hall effect, combined with a superconducting heater-cryotron bit-select element. The write energy of these memory elements is roughly 8 pJ with a bit-select element, designed to achieve a minimum overhead power consumption of about 30%. Individual magnetic memory cells measured at 4 K show reliable switching with write error rates below 10-6, and a 4 × 4 array can be fully addressed with bit select error rates of 10-6. This demonstration is a first step towards a full cryogenic memory architecture targeting energy and performance specifications appropriate for applications in superconducting high performance and quantum computing control systems, which require significant memory resources operating at 4 K.

5.
Nat Mater ; 17(5): 411-415, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29581552

RESUMEN

Monolayers (MLs) of transition-metal dichalcogenides (TMDs) exhibit unusual electrical behaviour under magnetic fields due to their intrinsic spin-orbit coupling and lack of inversion symmetry1-15. Although recent experiments have also identified the critical role of carrier interactions within these materials11,15, a complete mapping of the ambipolar Landau level (LL) sequence has remained elusive. Here we use single-electron transistors (SETs)16,17 to perform LL spectroscopy in ML WSe2, and provide a comprehensive picture of the electronic structure of a ML TMD for both electrons and holes. We find that the LLs differ notably between the two bands, and follow a unique sequence in the valence band (VB) that is dominated by strong Zeeman effects. The Zeeman splitting in the VB is several times higher than the cyclotron energy, far exceeding the predictions of a single-particle model and, moreover, tunes significantly with doping 15 . This implies exceptionally strong many-body interactions, and suggests that ML WSe2 can serve as a host for new correlated-electron phenomena.

6.
J Phys Chem Lett ; 6(23): 4840-4, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26588805

RESUMEN

Electrolyte gating enables low voltage operation of organic thin film transistors, but little is known about the nature of the electrolyte/organic interface. Here we apply charge-modulation Fourier transform infrared spectroscopy, in conjunction with electrical measurements, on a model electrolyte gated organic semiconductor interface: single crystal rubrene/ion-gel. We provide spectroscopic signature for free-hole like carriers in the organic semiconductor and unambiguously show the presence of a high density of intrinsic doping of the free holes upon formation of the rubrene/ion-gel interface, without gate bias (Vg = 0 V). We explain this intrinsic doping as resulting from a thermodynamic driving force for the stabilization of free holes in the organic semiconductor by anions in the ion-gel. Spectroscopy also reveals the saturation of free-hole like carrier density at the rubrene/ion-gel interface at Vg < -0.5 V, which is commensurate with the negative transconductance seen in transistor measurements.

7.
Nat Mater ; 14(6): 636-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25849532

RESUMEN

The remarkable performance of lead halide perovskites in solar cells can be attributed to the long carrier lifetimes and low non-radiative recombination rates, the same physical properties that are ideal for semiconductor lasers. Here, we show room-temperature and wavelength-tunable lasing from single-crystal lead halide perovskite nanowires with very low lasing thresholds (220 nJ cm(-2)) and high quality factors (Q ∼ 3,600). The lasing threshold corresponds to a charge carrier density as low as 1.5 × 10(16) cm(-3). Kinetic analysis based on time-resolved fluorescence reveals little charge carrier trapping in these single-crystal nanowires and gives estimated lasing quantum yields approaching 100%. Such lasing performance, coupled with the facile solution growth of single-crystal nanowires and the broad stoichiometry-dependent tunability of emission colour, makes lead halide perovskites ideal materials for the development of nanophotonics, in parallel with the rapid development in photovoltaics from the same materials.

8.
Science ; 346(6206): 207-11, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25213379

RESUMEN

Quantum information can be stored in micromechanical resonators, encoded as quanta of vibration known as phonons. The vibrational motion is then restricted to the stationary eigenmodes of the resonator, which thus serves as local storage for phonons. In contrast, we couple propagating phonons to an artificial atom in the quantum regime and reproduce findings from quantum optics, with sound taking over the role of light. Our results highlight the similarities between phonons and photons but also point to new opportunities arising from the characteristic features of quantum mechanical sound. The low propagation speed of phonons should enable new dynamic schemes for processing quantum information, and the short wavelength allows regimes of atomic physics to be explored that cannot be reached in photonic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...