Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164240

RESUMEN

The At-Hook Motif Nuclear Localized Protein (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 is involved in regulation of the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from a decreased LRP initiation. The over-expression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. AHL18 is thus involved in the formation of lateral roots at both LRP initiation and their later development. We conclude that AHL18 participates in modulation of root system architecture through regulation of root apical meristem activity, lateral root initiation and emergence; these correspond well with expression pattern of AHL18.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Secuencias AT-Hook , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/química , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
2.
Trends Plant Sci ; 23(8): 721-730, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29764728

RESUMEN

Phosphorus (P) availability is a limiting factor for plant growth and development. Root tip contact with low Pi media triggers diverse changes in the root architecture of Arabidopsis thaliana. The most conspicuous among these modifications is the inhibition of root growth, which is triggered by a shift from an indeterminate to a determinate root growth program. This phenomenon takes place in the root tip and involves a reduction in cell elongation, a decrease in cell proliferation, and the induction of premature cell differentiation, resulting in meristem exhaustion. Here, we review recent findings in the root response of A. thaliana to low Pi availability and discuss the cellular and genetic basis of the inhibition of root growth in Pi-deprived seedlings.


Asunto(s)
Arabidopsis/fisiología , Fosfatos/deficiencia , Fósforo/deficiencia , Transducción de Señal , Adaptación Fisiológica , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hierro/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Fosfatos/metabolismo , Fósforo/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología
3.
Dev Cell ; 41(5): 555-570.e3, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28586647

RESUMEN

Low inorganic phosphate (Pi) availability causes terminal differentiation of the root apical meristem (RAM), a phenomenon known as root meristem exhaustion or determined growth. Here, we report that the CLE14 peptide acts as a key player in this process. Low Pi stress induces iron mobilization in the RAM through the action of LPR1/LPR2, causing expression of CLE14 in the proximal meristem region. CLV2 and PEPR2 receptors perceive CLE14 and trigger RAM differentiation, with concomitant downregulation of SHR/SCR and PIN/AUXIN pathway. Our results reveal multiple steps of the molecular mechanism of one of the most physiologically important root nutrient responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Diferenciación Celular , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Meristema/crecimiento & desarrollo , Fosfatos/deficiencia , Raíces de Plantas/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/genética , Meristema/metabolismo , Raíces de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 114(17): E3563-E3572, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28400510

RESUMEN

Low phosphate (Pi) availability constrains plant development and seed production in both natural and agricultural ecosystems. When Pi is scarce, modifications of root system architecture (RSA) enhance the soil exploration ability of the plant and lead to an increase in Pi uptake. In Arabidopsis, an iron-dependent mechanism reprograms primary root growth in response to low Pi availability. This program is activated upon contact of the root tip with low-Pi media and induces premature cell differentiation and the arrest of mitotic activity in the root apical meristem, resulting in a short-root phenotype. However, the mechanisms that regulate the primary root response to Pi-limiting conditions remain largely unknown. Here we report on the isolation and characterization of two low-Pi insensitive mutants (lpi5 and lpi6), which have a long-root phenotype when grown in low-Pi media. Cellular, genomic, and transcriptomic analysis of low-Pi insensitive mutants revealed that the genes previously shown to underlie Arabidopsis Al tolerance via root malate exudation, known as SENSITIVE TO PROTON RHIZOTOXICITY (STOP1) and ALUMINUM ACTIVATED MALATE TRANSPORTER 1 (ALMT1), represent a critical checkpoint in the root developmental response to Pi starvation in Arabidopsis thaliana Our results also show that exogenous malate can rescue the long-root phenotype of lpi5 and lpi6 Malate exudation is required for the accumulation of Fe in the apoplast of meristematic cells, triggering the differentiation of meristematic cells in response to Pi deprivation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Hierro/metabolismo , Malatos/metabolismo , Meristema/crecimiento & desarrollo , Fosfatos/metabolismo , Proteínas de Arabidopsis/metabolismo , Transportadores de Anión Orgánico/metabolismo , Factores de Transcripción/metabolismo
5.
Plant Signal Behav ; 11(5): e1173300, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27185363

RESUMEN

Phosphate (Pi) limitation is a constraint for plant growth in many natural and agricultural ecosystems. Plants possess adaptive mechanisms that enable them to cope with conditions of limited Pi supply, including a highly regulated genetic program controlling the expression of genes involved in different metabolic, signaling and development processes of plants. Recently, we showed that in response to phosphate limitation Arabidopsis thaliana sets specific DNA methylation patterns of genic features that often correlated with changes in gene expression. Our findings included, dynamic methylation changes in response to phosphate starvation and the observation that the expression of genes encoding DNA methyltransferases appear to be directly controlled by the key regulator PHOSPHATE RESPONSE 1 (PHR1). These results provide insight into how epigenetic marks can influence plant genomes and transcriptional programs to respond and adapt to harsh conditions. Here we present an analysis of DNA methylation in the upstream regions of low Pi responsive genes in Arabidopsis seedlings exposed to low Pi conditions. We found that hypo- and hyper-methylation in the vicinity of cognate binding sites for transcription factors known to regulate the phosphate starvation response clearly correlates with increased or decreased expression of low-Pi responsive genes.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Fosfatos/deficiencia , Secuencias Reguladoras de Ácidos Nucleicos/genética , Arabidopsis/efectos de los fármacos , Secuencia de Bases , Metilación de ADN/efectos de los fármacos , Perfilación de la Expresión Génica , Ontología de Genes , Motivos de Nucleótidos/genética , Fosfatos/farmacología
6.
Proc Natl Acad Sci U S A ; 112(52): E7293-302, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668375

RESUMEN

Phosphate (Pi) availability is a significant limiting factor for plant growth and productivity in both natural and agricultural systems. To cope with such limiting conditions, plants have evolved a myriad of developmental and biochemical strategies to enhance the efficiency of Pi acquisition and assimilation to avoid nutrient starvation. In the past decade, these responses have been studied in detail at the level of gene expression; however, the possible epigenetic components modulating plant Pi starvation responses have not been thoroughly investigated. Here, we report that an extensive remodeling of global DNA methylation occurs in Arabidopsis plants exposed to low Pi availability, and in many instances, this effect is related to changes in gene expression. Modifications in methylation patterns within genic regions were often associated with transcriptional activation or repression, revealing the important role of dynamic methylation changes in modulating the expression of genes in response to Pi starvation. Moreover, Arabidopsis mutants affected in DNA methylation showed that changes in DNA methylation patterns are required for the accurate regulation of a number of Pi-starvation-responsive genes and that DNA methylation is necessary to establish proper morphological and physiological phosphate starvation responses.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Adaptación Fisiológica/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
BMC Plant Biol ; 14: 69, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24649917

RESUMEN

BACKGROUND: Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. RESULTS: We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. CONCLUSIONS: The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Hidroponía , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas
8.
Plant Sci ; 205-206: 2-12, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23498857

RESUMEN

Proper root growth is crucial for anchorage, exploration, and exploitation of the soil substrate. Root growth is highly sensitive to a variety of environmental cues, among them water and nutrient availability have a great impact on root development. Phosphorus (P) availability is one of the most limiting nutrients that affect plant growth and development under natural and agricultural environments. Root growth in the direction of the long axis proceeds from the root tip and requires the coordinated activities of cell proliferation, cell elongation and cell differentiation. Here we report a novel gene, APSR1 (Altered Phosphate Starvation Response1), involved in root meristem maintenance. The loss of function mutant apsr1-1 showed a reduction in primary root length and root apical meristem size, short differentiated epidermal cells and long root hairs. Expression of APSR1 gene decreases in response to phosphate starvation and apsr1-1 did not show the typical progressive decrease of undifferentiated cells at root tip when grown under P limiting conditions. Interestingly, APSR1 expression pattern overlaps with root zones of auxin accumulation. Furthermore, apsr1-1 showed a clear decrease in the level of the auxin transporter PIN7. These data suggest that APSR1 is required for the coordination of cell processes necessary for correct root growth in response to phosphate starvation conceivably by direct or indirect modulation of PIN7. We also propose, based on its nuclear localization and structure, that APSR1 may potentially be a member of a novel group of transcription factors.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fosfatos/deficiencia , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Diferenciación Celular , Ácidos Indolacéticos/metabolismo , Meristema/citología , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Modelos Moleculares , Mutación , Especificidad de Órganos , Fenotipo , Filogenia , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Proteínas Recombinantes de Fusión , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Signal Behav ; 6(3): 382-92, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21368582

RESUMEN

Plants are exposed to several biotic and abiotic stresses. A common environmental stress that plants have to face both in natural and agricultural ecosystems that impacts both its growth and development is low phosphate (Pi) availability. There has been an important progress in the knowledge of the molecular mechanisms by which plants cope with Pi deficiency. However, the mechanisms that mediate alterations in the architecture of the Arabidopsis root system responses to Pi starvation are still largely unknown. One of the most conspicuous developmental effects of low Pi on the Arabidopsis root system is the inhibition of primary root growth that is accompanied by loss of root meristematic activity. To identify signalling pathways potentially involved in the Arabidpsis root meristem response to Pi-deprivation, here we report the global gene expression analysis of the root tip of wild type and low phosphorus insensitive4 (lpi4) mutant grown under Pi limiting conditions. Differential gene expression analysis and physiological experiments show that changes in the redox status, probably mediated by jasmonic acid and ethylene, play an important role in the primary root meristem exhaustion process triggered by Pi-starvation.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/fisiología , Ciclopentanos/metabolismo , Meristema/metabolismo , Oxilipinas/metabolismo , Fosfatos/deficiencia , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/fisiología , Plantas Modificadas Genéticamente/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...