Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 13(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36979306

RESUMEN

Glioblastoma Multiforme (GBM) is a tumor that infiltrates several brain structures. GBM is associated with abnormal motor activities resulting in impaired mobility, producing a loss of functional motor independence. We used a GBM xenograft implanted in the striatum to analyze the changes in Y (vertical) and X (horizontal) axis displacement of the metatarsus, ankle, and knee. We analyzed the steps dissimilarity factor between control and GBM mice with and without anastrozole. The body weight of the untreated animals decreased compared to treated mice. Anastrozole reduced the malignant cells and decreased GPR30 and ERα receptor expression. In addition, we observed a partial recovery in metatarsus and knee joint displacement (dissimilarity factor). The vertical axis displacement of the GBM+anastrozole group showed a difference in the right metatarsus, right knee, and left ankle compared to the GBM group. In the horizontal axis displacement of the right metatarsus, ankle, and knee, the GBM+anastrozole group exhibited a difference at the last third of the step cycle compared to the GBM group. Thus, anastrozole partially modified joint displacement. The dissimilarity factor and the vertical and horizontal displacements study will be of interest in GBM patients with locomotion alterations. Hindlimb displacement and gait locomotion analysis could be a valuable methodological tool in experimental and clinical studies to help diagnose locomotive deficits related to GBM.

2.
Oncol Lett ; 24(1): 217, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35720489

RESUMEN

Glioblastoma is the most frequent primary tumor in the human brain. Glioblastoma cells express aromatase and the classic estrogen receptors ERα and ERß and can produce estrogens that promote tumor growth. The membrane G protein-coupled estrogen receptor (GPER) also plays a significant role in numerous types of cancer; its participation in glioblastoma tumor development is not entirely known. The present study investigated the effect of the agonists [17ß-estradiol (E2) and G1] and antagonist (G15) of GPER on proliferation and apoptosis of C6 glioblastoma cells. GPER expression was evaluated by immunofluorescence, western blotting and reverse transcription-quantitative PCR. Cell proliferation was determined using Ki67 immunopositivity. Cell viability was examined using the MTT assay and apoptosis using caspase-3 immunostaining and ELISA. C6 cells express GPER, and the immunopositivity increased after exposure to E2, G1, or their combination. GPER protein expression increased after treatment with E2 combined with G1. However, GPER mRNA expression decreased in treated cells compared with control. The percentage of Ki67 immunopositive C6 cells increased under the effect of E2 in combination with G1 or G1 alone. G15 significantly reduced Ki67 immunopositivity. Pearson's correlation analysis revealed a positive relationship between GPER and Ki67 immunopositivity across the study conditions. Additionally, the MTT assay showed a significant reduction in C6 cell viability after G15 treatment, alone or in combination with G1. The exposure to G15 increased the percentage of caspase-3 immunopositivity cells and caspase-3 levels. Pearson's correlation analysis demonstrated a negative correlation between GPER and caspase-3 immunopositivity across the study conditions. Glioblastoma C6 cells express GPER, and this receptor modulates cell proliferation and apoptosis. The GPER agonists E2 and G1 favored cell proliferation; meanwhile, the antagonist G15 reduced cell proliferation, viability and favored apoptosis. Therefore, GPER may be used as a biomarker of glioblastoma and as a target to develop new therapeutic strategies for glioblastoma treatment.

3.
Front Cell Neurosci ; 14: 579162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192324

RESUMEN

Locomotion speed changes appear following hippocampal injury. We used a hippocampal penetrating brain injury mouse model to analyze other kinematic changes. We found a significant decrease in locomotion speed in both open-field and tunnel walk tests. We described a new quantitative method that allows us to analyze and compare the displacement curves between mice steps. In the tunnel walk, we marked mice with indelible ink on the knee, ankle, and metatarsus of the left and right hindlimbs to evaluate both in every step. Animals with hippocampal damage exhibit slower locomotion speed in both hindlimbs. In contrast, in the cortical injured group, we observed significant speed decrease only in the right hindlimb. We found changes in the displacement patterns after hippocampal injury. Mesenchymal stem cell-derived extracellular vesicles had been used for the treatment of several diseases in animal models. Here, we evaluated the effects of intranasal administration of endometrial mesenchymal stem cell-derived extracellular vesicles on the outcome after the hippocampal injury. We report the presence of vascular endothelial growth factor, granulocyte-macrophage colony-stimulating factor, and interleukin 6 in these vesicles. We observed locomotion speed and displacement pattern preservation in mice after vesicle treatment. These mice had lower pyknotic cells percentage and a smaller damaged area in comparison with the nontreated group, probably due to angiogenesis, wound repair, and inflammation decrease. Our results build up on the evidence of the hippocampal role in walk control and suggest that the extracellular vesicles could confer neuroprotection to the damaged hippocampus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...