Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Intervalo de año de publicación
1.
Arch Microbiol ; 206(1): 53, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180563

RESUMEN

The A. sendaiensis PA2 is a polyextremophile bacterium. In this study, we analyze the A. sendaiensis PA2 genome. The genome was assembled and annotated. The A. sendaiensis PA2 genome structure consists of a 2,956,928 bp long chromosome and 62.77% of G + C content. 3056 CDSs were predicted, and 2921 genes were assigned to a putative function. The ANIm and ANIb value resulted in 97.17% and 96.65%, the DDH value was 75.5%, and the value of TETRA (Z-score) was 0.98. Comparative genomic analyses indicated that three systems are enriched in A. sendaiensis PA2. This strain has phenotypic changes in cell wall during batch culture at 65 °C, pH 5.0 and without carbon and nitrogen source. The presence of unique genes of cell wall and sporulation subsystem could be related to the adaptation of A. sendaiensis PA2 to hostile conditions.


Asunto(s)
Alicyclobacillus , Temperatura , Pared Celular/genética , Concentración de Iones de Hidrógeno
2.
Curr Microbiol ; 79(10): 317, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088517

RESUMEN

Tofu is one of the main foods made with soybeans. The aim of this work was to evaluate the effect of L. plantarum and L. fermentum on the volatile compounds and sensorial profile of fermented tofu during ripening. The soy milk was fermented separately with two native strains (L. plantarum or L. fermentum) until reaching a pH of 5.5, and the fermented tofu was obtained. The tofu obtained by acidification with lactic acid was used as a control and was characterized by microbial survival (L. plantarum, L. fermentum, and P. freudenreichii) for 0, 20, and 40 days of storage at 15 °C. Moreover, the lactic and acetic acid content was determined by high-performance liquid chromatography (HPLC), and the volatile compounds were evaluated by gas. Chromatography-mass spectrometry (GC-MS). The results were analyzed by an ANOVA test (P < 0.05). After storage, the lactic acid bacteria (LAB) survived in the fermented tofu at a concentration higher than 8.0 log CFU/g after 40 days of storage. The shelf life of fermented tofu obtained by acidification was fewer than 20 days because of the presence of fungi and yeasts. The hexanal content was reduced by approximately 96% (P < 0.05) in the tofu obtained by fermentation compared with the control. This process for fermented tofu production employing two native strains could be used for industrial purposes.


Asunto(s)
Lactobacillus plantarum , Limosilactobacillus fermentum , Alimentos de Soja , Leche de Soja , Fermentación
3.
AoB Plants ; 14(3): plac027, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35782336

RESUMEN

Agave (Agave tequilana var. azul) is considered a crop with low genetic diversity because it has been propagated vegetatively for centuries for commercial purposes, and consequently, it could be equally susceptible to pests and diseases. However, the present study employs plant material derived from field-grown plants exhibiting phenotypic variability in susceptibility to agave wilt. The offshoots from rhizomes of these plants were reproduced in vitro and classified as potentially resistant or susceptible. Amplified fragment length polymorphism analysis confirmed wide genetic differences among individuals, but these differences were not correlated with the observed phenotypic variability in resistance. Propagated plantlets were inoculated with Fusarium solani in two time-lapse confrontations for 72 h and 30 days. The early biochemical response showed statistically superior levels in the accumulation of shikimic acid, phenolic compounds, and chitinase activity in potentially resistant plantlets. There was an inverse correlation of these early biochemical responses and salicylic acid and the incidence of diseased root cells in isogenic plantlets in the 30-day confrontation with F. solani, suggesting that these activities and accumulation of molecules were primordial in the defence against this pathogen.

4.
Plants (Basel) ; 11(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35214805

RESUMEN

Tempisque (Sideroxylon capiri Pittier) is classified as a threatened species and has been reported with a high content of phenols and flavonoids in the leaves. The use of abiotic elicitors such as radiation has been reported due to the changes it produces in the metabolism of plants by activating their defense mechanisms and increasing the biosynthesis of bioactive compounds with antioxidant capacity such as phenols and flavonoids. Therefore, the aim of this work was to evaluate the effect of UV-B radiation on growth parameters and the synthesis of bioactive compounds in in vitro culture of tempisque callus. For the callus induction, we used thidiazuron (TDZ) and 2,4-dichlorophenoxyacetic acid (2,4-D) at 0, 0.5 and 1 mg/L. Calluses were exposed to UV-B radiation (0, 1, 2, 3 and 4 h/day) for two and four weeks. The highest callus formation index was obtained with TDZ and 2,4-D at 1 mg/mL. The greatest increase in the concentration of phenols and flavonoids was detected in the fourth week with 4 h of exposure per day. The highest concentrations of quercetin (230 µg/g dry weight), kaempferol (235 µg/g dry weight) and gallic acid (240 µg/g dry weight) were found in callus obtained from leaves explants.

5.
Extremophiles ; 26(1): 8, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35059856

RESUMEN

The "El Chichón" crater-lake in Mexico is a thermo-acidic environment whose microorganisms have been scarcely studied. In this study, we surveyed the prokaryotic communities by amplicon sequencing of the 16S rRNA gene considering samples of sediment and water collected within a pH/temperature gradient (pH 1.9-5.1, 38-89 °C). Further, we interpreted these results within a physicochemical context. The composition of the microbial assemblage differed significantly between the sediments and water. Sediment communities were different in the site with the highest temperature and lower pH value compared to the other ones sampled, while those in the water were relatively similar at all points. Most of the genera found were related to Alicyclobacillus, Acinetobacter, Bacillus, Mesoaciditoga, Methanothermobacter, Desulfitobacterium, Therminicanus, Kyrpidia, Paenibacillus, Thermoanaerobacterium, and Gelria. Some of these genera are known by their thermo-acidic tolerant capacities with flexible metabolisms to use diverse electron donor/acceptors (S or Fe), while others are thermo(acid)philes that mainly occur in the most extreme sites of the lake. These results show the presence of a microbial community adapted to the changing conditions of a very dynamic crater-lake, that include chemoorganotrophs and chemolithotrophs.


Asunto(s)
Sedimentos Geológicos , Lagos , Filogenia , Fuerza Protón-Motriz , ARN Ribosómico 16S/genética
6.
Plants (Basel) ; 10(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34834854

RESUMEN

The carrot is considered a model system in plant cell culture. Spray drying represents a widely used technology to preserve microorganisms, such as bacteria and yeasts. In germplasm conservation, the most used methods are freeze drying and cryopreservation. Therefore, the aim of this work was to evaluate the effect of spray drying on the viability and totipotency of somatic carrot cells. Leaf, root and stem explants were evaluated to induce callus with 2 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D). Calli obtained from the stem were cultivated in a liquid medium with 1 mg/L of 2,4-D. Cell suspensions were spray dried with maltodextrin-gum Arabic and maltodextrin-xanthan gum mixtures, two outlet air temperatures (50 and 60 °C) and 120 °C inlet air temperature. Results showed that carrot cells were viable after spray drying, and this viability remained for six months at 8 °C. The totipotency of the microencapsulated cells was proven. Cells that were not spray dried regenerated 24.6 plantlets, while the spray dried cells regenerated 19 plantlets for each gram of rehydrated powder. Thus, spray drying allowed researchers to obtain viable and totipotent cells. This work is the first manuscript that reported the spray drying of plant somatic cells.

7.
ScientificWorldJournal ; 2021: 5561930, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220365

RESUMEN

The use of phytonanoparticles in agriculture could decrease the use of fertilizers and therefore decrease soil contamination, due to their size being better assimilated in plants. It is important to mention that the nanofertilizer is slow-releasing and improves plant physiological properties and various nutritional parameters. The influence of soil and foliar applications of phytonanoparticles of ZnO with the Moringa oleifera extract under three concentrations (25, 50, and 100 ppm) was evaluated on the cherry tomato crop (Solanum lycopersicum L.). Synthesis of the phytonanoparticles was analyzed with ultraviolet-visible spectroscopy (UV-Vis) and infrared transmission spectroscopy with Fourier transform (FT-IR), as well as the analysis with the dynamic light scattering (DLS) technique. The morphometric parameters were evaluated before and after the application of the nanoparticles. The minerals' content of fruits was done 95 days after planting. Results showed that soil application was better at a concentration of 25 ppm of phytonanoparticles since it allowed the greatest number of flowers and fruits on the plant; however, it was demonstrated that when performing a foliar application, the fruit showed the highest concentrations for the elements Mg, Ca, and Na at concentrations of 511, 4589, and 223 mg kg-1, respectively.


Asunto(s)
Nanopartículas/análisis , Suelo/química , Solanum lycopersicum/química , Óxido de Zinc/análisis , Agricultura
8.
Int J Phytoremediation ; 23(7): 747-754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33284665

RESUMEN

Different types of nanoparticles (NPs) are increasingly used in multiple sectors such as industry, medicine and agriculture. This application has increased the possibility of NPs accumulating and contaminating the environment. Plants are one of the essential building blocks of all ecosystems and the interaction between NPs and plants is an indispensable aspect of risk assessment. To understand the effects of NPs in agricultural systems, in the present study we investigated the effects of exposure of Ag, Cu and Cu/Ag phytonanoparticles in Arachis hypogaea L. plants at a physiological and biochemical level, for which NPs solutions were applied foliarly at concentrations of 250, 500, 750 and 1000 ppm for 48 days. Parameters such as leaf length, chlorophyll and concentration of phytohormones showed that phytonanoparticles could cause serious damage to plant growth and development. Plants exposed to phytonanoparticles showed an increase in total phenols, proline, PAL activity and antioxidant enzymes, this to mitigate the stress caused. The alteration in the composition and content of fatty acids in the peanut kernels after exposure to different NPs indicated that they could affect the yield and quality of crop. Therefore, it is necessary to investigate its potential impact on food quality. Statement of noveltyIn this manuscript, we report for the first time that green nanoparticles induced a lower degree of toxicity in plants compared to commercial nanoparticles.Our results indicate that the mechanisms by which peanut plants respond to the application of nanoparticles were an increase in the activity of phenylalanine ammonia-lyase and antioxidant enzymes. So far there are few studies on the effect of nanoparticles on plant hormones, our results revealed a significant decrease in indole-3 acetic acid and induced the synthesis of gibberellins. The modification in the composition and content of fatty acids in the peanut kernels indicated that the nanoparticles could affect the quality of the crop.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Arachis , Biodegradación Ambiental , Ecosistema , Hojas de la Planta
9.
Front Vet Sci ; 7: 99, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32258064

RESUMEN

The green iguana appears to be a carrier for bacteria causing gastrointestinal infections in humans. The presence of diarrheagenic E. coli (DEC) pathotypes, however, has not been studied in this reptile. The aim of the current work was to investigate the prevalence of DEC in the intestines of 240 captive green iguanas, their phylogenetic groups, and the antibiotic susceptibility profile. E. coli strains were isolated from 41.7% (N = 100/240) of the intestinal content of green iguanas. DEC strains was identified in 25.9% of the screened population and were detected in the majority (62%, p = 0.009) of those reptiles carrying E. coli strains. Among DEC strains, STEC strains carrying the stx1 gene were the most prevalent pathotype isolated (38.7%), followed by EAEC and ETEC (27.4% each). Genetic markers of DEC strains belonging to the EHEC pathotype were not detected. More than a half of DEC strains were classified into the Clade I-II phylogroup (64.5%), followed by the phylogroup A (14.5%). The antibiotic susceptibility method demonstrated that a high proportion of DEC strains were resistance, or non-susceptible, to carbenicillin, amikacin, and ampicillin. We conclude that the green iguana kept in captivity is a carrier of DEC strains bearing resistance to first-line antibiotics, including penicillins. Given the increase presence of the green iguana in Latin American households, these reptiles represent a potential source of transmission to susceptible humans and therefore a potential source of gastrointestinal disease.

10.
Nutrients ; 12(3)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138281

RESUMEN

Mango (Mangifera indica L.) peel and pulp are a source of dietary fiber (DF) and phenolic compounds (PCs) that constituent part of the indigestible fraction (IF). This fraction reaches the colon and acts as a carbon and energy source for intestinal microbiota. The effect of mango IF on intestinal microbiota during colonic fermentation is unknown. In this study, the isolated IF of a novel 'Ataulfo' mango-based bar (snack) UV-C irradiated and non-irradiated (UVMangoB and MangoB) were fermented. Colonic fermentation occurred in vitro under chemical-enzymatic, semi-anaerobic, batch culture and controlled pH colonic conditions. Changes in the structure of fecal microbiota were analyzed by 16s rRNA gene Illumina MiSeq sequencing. The community´s functional capabilities were determined in silico. The MangoB and UVMangoB increased the presence of Faecalibacterium, Roseburia, Eubacterium, Fusicatenibacter, Holdemanella, Catenibacterium, Phascolarctobacterium, Buttiauxella, Bifidobacterium, Collinsella, Prevotella and Bacteroides genera. The alpha indexes showed a decrease in microbial diversity after 6 h of colonic fermentation. The coordinates analysis indicated any differences between irradiated and non-irradiated bar. The metabolic prediction demonstrated that MangoB and UVMangoB increase the microbiota carbohydrate metabolism pathway. This study suggests that IF of mango-based bar induced beneficial changes on microbial ecology and metabolic pathway that could be promissory to prevention or treatment of metabolic dysbiosis. However, in vivo interventions are necessary to confirm the interactions between microbiota modulating and intestinal beneficial effects.


Asunto(s)
Bacterias/crecimiento & desarrollo , Colon , Fibras de la Dieta/administración & dosificación , Digestión , Microbioma Gastrointestinal , Mangifera , Redes y Vías Metabólicas , Adulto , Bacterias/clasificación , Colon/metabolismo , Colon/microbiología , Fibras de la Dieta/metabolismo , Femenino , Humanos , Masculino
11.
Rev. argent. microbiol ; 51(2): 103-109, jun. 2019. ilus, graf, tab
Artículo en Inglés | LILACS | ID: biblio-1013358

RESUMEN

In the present work, the biosynthesis of silver-nanoparticles (AgNP) was evaluated using the aqueous extract from Justicia spicigera. The obtained silver nanoparticles were characterized using UV-visible spectroscopic techniques, energy dispersive X-ray spectrometers (EDS), zeta potential and dynamic light scattering. The antimicrobial activity of biosynthesized AgNP was tested against foodborne bacteria (Bacillus cereus, Klebsiella pneumoniae and Enterobacter aerogenes) and phytopathogenic fungi (Colletotrichum sp., Fusarium solani, Alternaria alternata and Macrophomina phaseolina). The elemental profile of synthesized nanoparticles using J. spicigera shows higher counts at 3 keV due to silver, confirming the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis showed a particle size between 86 and 100 nm with spherical morphology. AgNP showed effective antibacterial and antifungal activity against the tested organisms principally with B. cereus, K. pneumoniae, E. aerogenes, A. alternata and M. phaseolina. Therefore, further studies are needed to confirm the potential of AgNP from J. spicigera in the control of indicator organisms under field conditions.


En el presente trabajo se evaluó la biosíntesis de nanopartículas de plata (AgNP) en presencia de una sal de plata y extractos acuosos de Justicia spicigera. Las nanopartículas así obtenidas fueron caracterizadas mediante técnicas espectroscópicas UV-visibles, espectrómetros de rayos X de energía dispersiva (EDS), potencial zeta y dispersión de luz dinámica. La actividad antimicrobiana de las AgNP biosintetizadas se probó frente a diversas bacterias transmitidas por alimentos (Bacillus cereus, Klebsiella pneumoniae y Enterobacter aerogenes) y hongos fitopatógenos (Colletotrichum sp., Fusarium solani, Alternaria alternata y Macrophomina phaseolina). El perfil elemental de las nanopartículas sintetizadas utilizando el extracto de J. spicigera mostró valores altos a 3 keV, lo que confirma la formación de nanopartículas de plata. El análisis por microscopía electrónica de barrido (SEM) reveló un tamaño de partícula entre 86 y 100 nm, con morfología esférica. Las AgNP mostraron una actividad antibacteriana y antifúngica efectiva contra los organismos evaluados, principalmente contra B. cereus, K. pneumoniae, E. aerogenes, A. alternata y M. phaseolina. Se necesitan más estudios para confirmar el potencial de las AgNP derivadas de J. spicigera en el control de organismos indicadores en condiciones de campo.


Asunto(s)
Plata/uso terapéutico , Control Biológico de Vectores , Nanopartículas del Metal/análisis , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Antiinfecciosos , Antifúngicos
12.
Rev Argent Microbiol ; 51(2): 103-109, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30029815

RESUMEN

In the present work, the biosynthesis of silver-nanoparticles (AgNP) was evaluated using the aqueous extract from Justicia spicigera. The obtained silver nanoparticles were characterized using UV-visible spectroscopic techniques, energy dispersive X-ray spectrometers (EDS), zeta potential and dynamic light scattering. The antimicrobial activity of biosynthesized AgNP was tested against foodborne bacteria (Bacillus cereus, Klebsiella pneumoniae and Enterobacter aerogenes) and phytopathogenic fungi (Colletotrichum sp., Fusarium solani, Alternaria alternata and Macrophomina phaseolina). The elemental profile of synthesized nanoparticles using J. spicigera shows higher counts at 3keV due to silver, confirming the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis showed a particle size between 86 and 100nm with spherical morphology. AgNP showed effective antibacterial and antifungal activity against the tested organisms principally with B. cereus, K. pneumoniae, E. aerogenes, A. alternata and M. phaseolina. Therefore, further studies are needed to confirm the potential of AgNP from J. spicigera in the control of indicator organisms under field conditions.


Asunto(s)
Bacterias , Agentes de Control Biológico , Microbiología de Alimentos , Hongos , Género Justicia/metabolismo , Nanopartículas del Metal , Plata/metabolismo , Enfermedades de las Plantas/microbiología
13.
Open Life Sci ; 14: 62-68, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33817138

RESUMEN

The present study was conducted to evaluate the impact of monometallic and bimetallic nanoparticles (NPs) of copper (Cu) and silver (Ag) from Justicia spicigera on the photochemical efficiency and phenol pattern of Prosopis glandulosa. In this study, the existence of localized surface plasmon resonance absorption associated with the nano-sized nature of Ag, Cu and Cu/Ag particles was confirmed by the presence of a single peak around 487, 585, and 487/580 nm respectively. Zeta potential and electrophoretic mobility were found to be 0.2 mV and 0.02 µmcm/(Vs) for synthesized NPs indicating less stability and thus tendency to agglomerate, and broad distribution of particles. Cu-NPs and Cu/Ag-NPs demonstrate that the dispersed phase is stable and has a minimum particle size at zeta potentials above -30 mV. Changes in phenolic compounds, total chlorophyll, and photochemical efficiency in leaves exposed to Ag, Cu and Cu/Ag phyto-nanoparticles were evaluated up to 72 hours. The results revealed that Ag-NP and Cu-NP from J. spicigera at 100 mg/L showed significant reduction in chlorophyll, epidermal polyphenol content and photochemical efficiency of P. glandulosa. In contrast, the application of bimetallic Cu/Ag-NP from J. spicigera showed a positive impact on physiological parameters of P. glandulosa after 72 h of exposure.

14.
An Acad Bras Cienc ; 90(2): 1465-1472, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29898105

RESUMEN

The aim of the present work is to evaluate the changes on the phenylalanine ammonia lyase (PAL) activity, phenolic compounds accumulation and photochemical efficiency in leaves of P. glandulosa treated with Cd2+ (0.001 M) and Cu2+ (0.52 M) concentrations for 96 h under hydroponic conditions. The results showed that only leaves treated with copper had a decrease in photochemical efficiency and leaf epidermal polyphenols in P. glandulosa leaves after 96 h of exposure. On the other hand the reverse-phase HPLC analysis revealed higher levels of phenolic compound (gallic, vanillic and caffeic acids) and flavonoids (rutin and kaempferol-3-O-glucosides) in plant leaves from Cu and Cd-treatments with respect to control plants. Finally, highest increments in PAL activity was observed in extracts of leaves treated with Cu and Cd (about 205 and 284%), respectively, with respect to control plants after 96 h treatment. These suggest that activation of phenylpropanoid pathway represent a source of nonenzymatic antioxidants that protect at P. glandulosa against oxidative stress when exposed to cadmium and copper. Hence future studies are necessary to elucidate the participation of phenylpropanoid pathway in the reduction of metal toxicity in Prosopis species.


Asunto(s)
Cadmio/farmacología , Cobre/farmacología , Flavonoides/metabolismo , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Hojas de la Planta/efectos de los fármacos , Prosopis/efectos de los fármacos , Cromatografía Líquida de Alta Presión , México , Fenilanina Amoníaco-Liasa/efectos de los fármacos , Hojas de la Planta/metabolismo , Prosopis/química
15.
J Oleo Sci ; 67(5): 525-529, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29628485

RESUMEN

Olive trees are one of the most important oil crops in the world due to the sensorial and nutritional characteristics of olive oil, such as lipid composition and antioxidant content, and the medicinal properties of its leaves. In this paper, callus formation was induced using nodal segments of olive tree (Olea europaea cv. cornicabra) as explants. Fatty acid profile, total phenolic compounds and total flavonoid compounds were determined in callus culture after 15 weeks and compared with leaf and nodal segments tissues. There was no statistical difference in phenolic compounds among leaf, nodal segments and callus culture, whereas flavonoid compounds were higher in leaf. Fatty acid profile was similar in leaf, nodal segments and callus culture and was constituted by hexadecanoic acid, octadecanoic acid, cis-9-octadecenoic acid, cis-9,12-octadecadienoic acid, cis-9,12,15-octadecatrienoic acid. Hexadecanoic acid was the main fatty acid in callus, leaf and nodal segments with 35.0, 39.0 and 40.0% (w/w), of the lipid composition, respectively. With this paper, it is being reported for the first time the capacity of callus culture to accumulate fatty acids. Our results could serve to continue studying the production of fatty acids in callus cultivation as a biotechnological tool to improve different olive cultivars.


Asunto(s)
Ácidos Grasos/análisis , Flavonoides/análisis , Hidroxibenzoatos/análisis , Olea/química , Ácido Palmítico/análisis , Hojas de la Planta/química
16.
Sensors (Basel) ; 18(2)2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29470432

RESUMEN

This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance), a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD) meter. Chlorophyll content estimation was realized for Lactuca sativa L., Azadirachta indica, Canavalia ensiforme, and Lycopersicon esculentum. Experimental results showed that-in terms of accuracy and processing speed-the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as Azadirachta indica, where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.


Asunto(s)
Clorofila/análisis , Algoritmos , Solanum lycopersicum , Hojas de la Planta , Espectrofotometría
17.
Genome Announc ; 5(46)2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29146860

RESUMEN

We report here the complete genome sequence of Rhizobium sp. strain ACO-34A, isolated from Agave americana L. rhizosphere. No common nod genes were found, but there were nif genes for nitrogen fixing. A low average nucleotide identity to reported species supports its designation as a novel Rhizobium species that has a complete ribosomal operon in a plasmid.

18.
Braz. j. microbiol ; 47(3): 587-596, July-Sept. 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-788962

RESUMEN

ABSTRACT The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRNA gene showed that strains ACO-34A, ACO-40 and ACO-140 were Rhizobium daejeonense, Acinetobacter calcoaceticus and Pseudomonas mosselii, respectively. All of the strains were able to synthesize indole-3-acetic acid (IAA), solubilize phosphate, and had nitrogenase activity. Inoculation using the plant growth-promoting bacteria strains had a significant effect (p < 0.05) on plant growth and the sugar content of A. americana, showing that these native plant growth-promoting bacteria are a practical, simple, and efficient alternative to promote the growth of agave plants with proper biological characteristics for agroindustrial and biotechnological use and to increase the sugar content in this agave species.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Agave/fisiología , Agave/microbiología , Fructanos/biosíntesis , Fenotipo , Filogenia , Reguladores del Crecimiento de las Plantas/biosíntesis , Bacterias/genética , ARN Ribosómico 16S/genética , Genotipo
19.
Braz J Microbiol ; 47(3): 587-96, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27268113

RESUMEN

The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRNA gene showed that strains ACO-34A, ACO-40 and ACO-140 were Rhizobium daejeonense, Acinetobacter calcoaceticus and Pseudomonas mosselii, respectively. All of the strains were able to synthesize indole-3-acetic acid (IAA), solubilize phosphate, and had nitrogenase activity. Inoculation using the plant growth-promoting bacteria strains had a significant effect (p<0.05) on plant growth and the sugar content of A. americana, showing that these native plant growth-promoting bacteria are a practical, simple, and efficient alternative to promote the growth of agave plants with proper biological characteristics for agroindustrial and biotechnological use and to increase the sugar content in this agave species.


Asunto(s)
Agave/microbiología , Agave/fisiología , Bacterias/clasificación , Bacterias/metabolismo , Fructanos/biosíntesis , Reguladores del Crecimiento de las Plantas/biosíntesis , Bacterias/genética , Genotipo , Fenotipo , Filogenia , ARN Ribosómico 16S/genética
20.
J Oleo Sci ; 65(4): 311-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26972464

RESUMEN

The aim of this study was analyze the effect of jasmonic acid (JA) and abscisic acid (ABA) as elicitors on fatty acids profile (FAP), phenolic compounds (PC) and antioxidant capacity (AC) in callus of Thevetia peruviana. Schenk & Hildebrandt (SH) medium, supplemented with 2 mg/L 2, 4-dichlorophenoxyacetic (2, 4-D) and 0.5 mg/L kinetin (KIN) was used for callus induction. The effect of JA (50, 75 and 100 µM) and ABA (10, 55 and 100 µM) on FAP, PC and AC were analyzed using a response surface design. A maximum of 2.8 mg/g of TPC was obtained with 100 plus 10 µM JA and ABA, respectively, whereas AC maximum (2.17 µg/mL) was obtained with 75 plus 100 µM JA and ABA, respectively. The FAP was affected for JA but not for ABA. JA increased cis-9, cis-12-octadecadienoic acid and decreased dodecanoic acid. Eight fatty acids were identified by GC-MS analysis and cis-9-octadecenoic acid (18:1) was the principal fatty acid reaching 76 % in treatment with 50 µM JA plus 55 µM ABA. In conclusion, JA may be used in T. peruviana callus culture for obtain oil with different fatty acids profile.


Asunto(s)
Ácido Abscísico/farmacología , Antioxidantes/análisis , Ciclopentanos/farmacología , Ácidos Grasos/análisis , Oxilipinas/farmacología , Fenoles/análisis , Thevetia/química , Acetatos , Ácidos Grasos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Cinetina , Ácidos Láuricos/análisis , Ácidos Esteáricos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...