Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0300544, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656972

RESUMEN

Obesity is a major global health epidemic that has adverse effects on both the people affected as well as the cost to society. Several anti-obesity drugs that target GLP-1 receptors have recently come to the market. Here, we describe the effects of tesofensine, a novel anti-obesity drug that acts as a triple monoamine neurotransmitter reuptake inhibitor. Using various techniques, we investigated its effects on weight loss and underlying neuronal mechanisms in mice and rats. These include behavioral tasks, DeepLabCut videotaped analysis, electrophysiological ensemble recordings, optogenetic activation, and chemogenetic silencing of GABAergic neurons in the Lateral Hypothalamus (LH). We found that tesofensine induces a greater weight loss in obese rats than lean rats, while differentially modulating the neuronal ensembles and population activity in LH. In Vgat-ChR2 and Vgat-IRES-cre transgenic mice, we found for the first time that tesofensine inhibited a subset of LH GABAergic neurons, reducing their ability to promote feeding behavior, and chemogenetically silencing them enhanced tesofensine's food-suppressing effects. Unlike phentermine, a dopaminergic appetite suppressant, tesofensine causes few, if any, head-weaving stereotypy at therapeutic doses. Most importantly, we found that tesofensine prolonged the weight loss induced by 5-HTP, a serotonin precursor, and blocked the body weight rebound that often occurs after weight loss. Behavioral studies on rats with the tastant sucrose indicated that tesofensine's appetite suppressant effects are independent of taste aversion and do not directly affect the perception of sweetness or palatability of sucrose. In summary, our data provide new insights into the effects of tesofensine on weight loss and the underlying neuronal mechanisms, suggesting that tesofensine may be an effective treatment for obesity and that it may be a valuable adjunct to other appetite suppressants to prevent body weight rebound.


Asunto(s)
Fármacos Antiobesidad , Compuestos Bicíclicos Heterocíclicos con Puentes , Neuronas GABAérgicas , Obesidad , Animales , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Ratas , Ratones , Fármacos Antiobesidad/farmacología , Masculino , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Conducta Alimentaria/efectos de los fármacos , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratones Transgénicos , Pérdida de Peso/efectos de los fármacos , Ratas Sprague-Dawley
2.
Cell Rep ; 42(11): 113365, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37924513

RESUMEN

The insular cortex (IC) has been linked to the processing of interoceptive and exteroceptive signals associated with addictive behavior. However, whether the IC modulates the acquisition of drug-related affective states by direct top-down connectivity with ventral tegmental area (VTA) dopamine neurons is unknown. We found that photostimulation of VTA terminals of the anterior insular cortex (aIC) induces rewarding contextual memory, modulates VTA activity, and triggers dopamine release within the VTA. Employing neuronal recordings and neurochemical and transsynaptic tagging techniques, we disclose the functional top-down organization tagging the aIC pre-synaptic neuronal bodies and identifying VTA recipient neurons. Furthermore, systemic administration of amphetamine altered the VTA excitability of neurons modulated by the aIC projection, where photoactivation enhances, whereas photoinhibition impairs, a contextual rewarding behavior. Our study reveals a key circuit involved in developing and retaining drug reward-related contextual memory, providing insight into the neurobiological basis of addictive behavior and helping develop therapeutic addiction strategies.


Asunto(s)
Neuronas Dopaminérgicas , Área Tegmental Ventral , Neuronas Dopaminérgicas/fisiología , Área Tegmental Ventral/fisiología , Corteza Insular , Anfetamina/farmacología , Recompensa
3.
Elife ; 122023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37646772

RESUMEN

A new platform for studying how brain activity is linked to behavior enables researchers to perform diverse experiments on mice that have their heads immobilized.


Asunto(s)
Movimiento , Investigación , Animales , Ratones , Humanos , Encéfalo , Investigadores
5.
eNeuro ; 9(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35715209

RESUMEN

How do animals experience brain manipulations? Optogenetics has allowed us to manipulate selectively and interrogate neural circuits underlying brain function in health and disease. However, little is known about whether mice can detect and learn from arbitrary optogenetic perturbations from a wide range of brain regions to guide behavior. To address this issue, mice were trained to report optogenetic brain perturbations to obtain rewards and avoid punishments. Here, we found that mice can perceive optogenetic manipulations regardless of the perturbed brain area, rewarding effects, or the stimulation of glutamatergic, GABAergic, and dopaminergic cell types. We named this phenomenon optoception, a perceptible signal internally generated from perturbing the brain, as occurs with interoception. Using optoception, mice can learn to execute two different sets of instructions based on the laser frequency. Importantly, optoception can occur either activating or silencing a single cell type. Moreover, stimulation of two brain regions in a single mouse uncovered that the optoception induced by one brain region does not necessarily transfer to a second not previously stimulated area, suggesting a different sensation is experienced from each site. After learning, they can indistinctly use randomly interleaved perturbations from both brain regions to guide behavior. Collectively taken, our findings revealed that mice's brains could "monitor" perturbations of their self-activity, albeit indirectly, perhaps via interoception or as a discriminative stimulus, opening a new way to introduce information to the brain and control brain-computer interfaces.


Asunto(s)
Encéfalo , Optogenética , Animales , Encéfalo/fisiología , Cabeza , Ratones , Percepción , Recompensa
6.
Neuroscience ; 493: 81-98, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35504509

RESUMEN

The palatability and concentration of sweet foods promote hedonic feeding beyond homeostatic need. Understanding how neurons respond to sweet taste is thus of great importance. The dorsomedial nucleus accumbens shell (dNAcMed) is considered a "sensory sentinel," promoting hedonic feeding. However, it is unknown how neurons in the lateral part (NAcLat) respond to oral sucrose stimulation. Using in vivo calcium imaging of individual D1 and D2 cells in NAcLat of mice performing behavioral licking tasks, we find that D1 and D2 neurons do not act as single homogeneous populations. Instead, their responses are organized into ensembles with context-dependent temporal dynamics around licking sucrose. At the macrostructure of licking (meals), D1 and D2 population activity recorded on the first day predict the licking behavior on subsequent days. However, at the level of the microstructure of licking (bouts), calcium activity increased concurrently in D1 and D2 neurons prior to licking bouts, whereas during licking, calcium signals decreased. Importantly, in a Brief Access Taste Task, calcium responses for D1 and D2 exhibit much more heterogeneity than during a freely licking task. Specifically, D1 and D2 neurons form distinct ensembles: some ramp up in anticipation of the first lick, some respond at the end of the taste-access period, and some categorize sucrose concentrations as low or high. Collectively, NAcLat D1 and D2 neurons are organized in ensembles that adapt to the behavioral context to monitor task-relevant events and sucrose concentrations.


Asunto(s)
Conducta Alimentaria , Núcleo Accumbens , Sacarosa , Animales , Calcio/metabolismo , Conducta Alimentaria/fisiología , Ratones , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Sacarosa/administración & dosificación
7.
Front Cell Neurosci ; 16: 823220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360496

RESUMEN

Taste memory involves storing information through plasticity changes in the neural network of taste, including the insular cortex (IC) and ventral tegmental area (VTA), a critical provider of dopamine. Although a VTA-IC dopaminergic pathway has been demonstrated, its role to consolidate taste recognition memory remains poorly understood. We found that photostimulation of dopaminergic neurons in the VTA or VTA-IC dopaminergic terminals of TH-Cre mice improves the salience to consolidate a subthreshold novel taste stimulus regardless of its hedonic value, without altering their taste palatability. Importantly, the inhibition of the D1-like receptor into the IC impairs the salience to facilitate consolidation of an aversive taste recognition memory. Finally, our results showed that VTA photostimulation improves the salience to consolidate a conditioned taste aversion memory through the D1-like receptor into the IC. It is concluded that the dopamine activity from the VTA into IC is required to increase the salience enabling the consolidation of a taste recognition memory. Notably, the D1-like receptor activity into the IC is required to consolidate both innate and learned aversive taste memories but not appetitive taste memory.

8.
Compr Physiol ; 11(4): 2489-2523, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34558667

RESUMEN

The gustatory system detects and informs us about the nature of various chemicals we put in our mouth. Some of these have nutritive value (sugars, amino acids, salts, and fats) and are appetitive and avidly ingested, whereas others (atropine, quinine, nicotine) are aversive and rapidly rejected. However, the gustatory system is mainly responsible for evoking the perception of a limited number of qualities that humans taste as sweet, umami, bitter, sour, salty, and perhaps fat [free fatty acids (FFA)] and starch (malto-oligosaccharides). The complex flavors and mouthfeel that we experience while eating food result from the integration of taste, odor, texture, pungency, and temperature. The latter three arise primarily from the somatosensory (trigeminal) system. The sensory organs used for detecting and transducing many chemicals are found in taste buds (TBs) located throughout the tongue, soft palate esophagus, and epiglottis. In parallel with the taste system, the trigeminal nerve innervates the peri-gemmal epithelium to transmit temperature, mechanical stimuli, and painful or cooling sensations such as those produced by changes in temperature as well as from chemicals like capsaicin and menthol, respectively. This article gives an overview of the current knowledge about these TB cells' anatomy and physiology and their trigeminal induced sensations. We then discuss how taste is represented across gustatory cortices using an intermingled and spatially distributed population code. Finally, we review postingestion processing (interoception) and central integration of the tongue-gut-brain interaction, ultimately determining our sensations as well as preferences toward the wholesomeness of nutritious foods. © 2021 American Physiological Society. Compr Physiol 11:1-35, 2021.


Asunto(s)
Papilas Gustativas , Gusto , Encéfalo , Humanos , Quinina , Lengua
9.
Front Neurosci ; 14: 572328, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33177980

RESUMEN

D-norpseudoephedrine (NPE), also known as cathine, is found naturally in the shrub Catha edulis "Khat." NPE has been widely used as an appetite suppressant for the treatment of obesity. Although it is known that NPE acts on α1-adrenergic receptors, there is little information about the role of dopamine receptors on NPE's induced anorectic and weight loss effects. Equally untouched is the question of how NPE modulates neuronal activity in the nucleus accumbens shell (NAcSh), a brain reward center, and a pharmacological target for many appetite suppressants. To do this, in rats, we characterized the pharmacological effects induced by NPE on weight loss, food intake, and locomotion. We also determined the involvement of dopamine D1- and D2-like receptors using systemic and intra-NAcSh antagonists, and finally, we recorded single-unit activity in the NAcSh in freely moving rats. We found that NPE decreased 24-h food intake, induced weight loss, and as side effects increased locomotor activity and wakefulness. Also, intraperitoneal and intra-NAcSh administration of D1 and D2 dopamine antagonists partially reversed NPE's induced weight loss and food intake suppression. Furthermore, the D1 antagonist, SCH-23390, eliminated NPE-induced locomotion, whereas the D2 antagonist, raclopride, only delayed its onset. We also found that NPE evoked a net activation imbalance in NAcSh that propelled the population activity trajectories into a dynamic pharmacological brain state, which correlated with the onset of NPE-induced wakefulness. Together, our data demonstrate that NPE modulates NAcSh spiking activity and that both dopamine D1 and D2 receptors are necessary for NPE's induced food intake suppression and weight loss.

10.
eNeuro ; 7(5)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33077494

RESUMEN

The intensity of sucrose (its perceived concentration) and its palatability (positive hedonic valence associated with ingestion) are two taste attributes that increase its attractiveness and overconsumption. Although both sensory attributes covary, in that increases in sucrose concentration leads to similar increases in its palatability, this covariation does not imply that they are part of the same process or whether they represent separate processes. Both these possibilities are considered in the literature. For this reason, we tested whether sucrose's perceived intensity could be separated from its hedonically positive palatability. To address this issue, rats were trained in a sucrose intensity task to report the perceived intensity of a range of sucrose concentrations before and after its palatability was changed using a conditioned taste aversion (CTA) protocol. We found that the subjects' performance remained essentially unchanged, although its palatability was changed from hedonically positive to negative. Overall, these data demonstrate that sucrose's perceived intensity and its positive palatability can be dissociated, meaning that changes of one taste attribute render the other mostly unaffected. Thus, the intensity attribute is sufficient to inform the perceptual judgments of sucrose's concentrations.


Asunto(s)
Percepción del Gusto , Gusto , Animales , Condicionamiento Clásico , Preferencias Alimentarias , Ratas , Sacarosa
11.
Front Neurosci ; 14: 490, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528244

RESUMEN

In previous reports, we developed a method to apply Brownian optogenetic noise-photostimulation (BONP, 470 nm) up to 0.67 mW on the barrel cortex of in vivo ChR2 transgenic mice. In such studies, we found that the BONP produces an increase in the evoked field potentials and the neuronal responses of pyramidal neurons induced by somatosensory mechanical stimulation. Here we extended such findings by examining whether the same type of BONP augments the Na+ current amplitude elicited by voltage-clamp ramps of dissociated pyramidal neurons from the somatosensory cortex of ChR2 transgenic and wild type mice. We found that in all neurons from the ChR2 transgenic mice, but none of the wild type mice, the peak amplitude of a TTX-sensitive Na+ current and its inverse of latency exhibited inverted U-like graphs as a function of the BONP level. It means that an intermediate level of BONP increases both the peak amplitude of the Na+ current and its inverse of latency. Our research suggests that the impact of BONP on the Na+ channels of pyramidal neurons could be associated with the observed augmentation-effects in our previous in vivo preparation. Moreover, it provides caution information for the use of an appropriate range of light intensity, <0.67 mW, which could avoid opto non-genetics (also termed "optonongenetic") related responses due to light-induced temperature changes.

12.
Commun Biol ; 3(1): 139, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198461

RESUMEN

Findings have shown that anterior insular cortex (aIC) lesions disrupt the maintenance of drug addiction, while imaging studies suggest that connections between amygdala and aIC participate in drug-seeking. However, the role of the BLA â†’ aIC pathway in rewarding contextual memory has not been assessed. Using a cre-recombinase under the tyrosine hydroxylase (TH+) promoter mouse model to induce a real-time conditioned place preference (rtCPP), we show that photoactivation of TH+ neurons induced electrophysiological responses in VTA neurons, dopamine release and neuronal modulation in the aIC. Conversely, memory retrieval induced a strong release of glutamate, dopamine, and norepinephrine in the aIC. Only intra-aIC blockade of the glutamatergic N-methyl-D-aspartate receptor accelerated rtCPP extinction. Finally, photoinhibition of glutamatergic BLA → aIC pathway produced disinhibition of local circuits in the aIC, accelerating rtCPP extinction and impairing reinstatement. Thus, activity of the glutamatergic projection from the BLA to the aIC is critical for maintenance of rewarding contextual memory.


Asunto(s)
Complejo Nuclear Basolateral/metabolismo , Conducta Animal , Corteza Cerebral/metabolismo , Ácido Glutámico/metabolismo , Memoria , Vías Nerviosas/metabolismo , Recompensa , Neuronas Adrenérgicas/metabolismo , Animales , Complejo Nuclear Basolateral/citología , Corteza Cerebral/citología , Condicionamiento Psicológico , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Extinción Psicológica , Femenino , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural , Vías Nerviosas/citología , Norepinefrina/metabolismo , Tirosina 3-Monooxigenasa/genética
13.
Cell Mol Life Sci ; 77(18): 3469-3502, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32006052

RESUMEN

Throughout the animal kingdom sucrose is one of the most palatable and preferred tastants. From an evolutionary perspective, this is not surprising as it is a primary source of energy. However, its overconsumption can result in obesity and an associated cornucopia of maladies, including type 2 diabetes and cardiovascular disease. Here we describe three physiological levels of processing sucrose that are involved in the decision to ingest it: the tongue, gut, and brain. The first section describes the peripheral cellular and molecular mechanisms of sweet taste identification that project to higher brain centers. We argue that stimulation of the tongue with sucrose triggers the formation of three distinct pathways that convey sensory attributes about its quality, palatability, and intensity that results in a perception of sweet taste. We also discuss the coding of sucrose throughout the gustatory pathway. The second section reviews how sucrose, and other palatable foods, interact with the gut-brain axis either through the hepatoportal system and/or vagal pathways in a manner that encodes both the rewarding and of nutritional value of foods. The third section reviews the homeostatic, hedonic, and aversive brain circuits involved in the control of food intake. Finally, we discuss evidence that overconsumption of sugars (or high fat diets) blunts taste perception, the post-ingestive nutritional reward value, and the circuits that control feeding in a manner that can lead to the development of obesity.


Asunto(s)
Obesidad/patología , Azúcares/metabolismo , Gusto/fisiología , Animales , Encéfalo/metabolismo , Humanos , Leptina/metabolismo , Neuronas/metabolismo , Valor Nutritivo , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
14.
Front Neurosci ; 14: 608047, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551725

RESUMEN

Sucrose is attractive to most species in the animal kingdom, not only because it induces a sweet taste sensation but also for its positive palatability (i.e., oromotor responses elicited by increasing sucrose concentrations). Although palatability is such an important sensory attribute, it is currently unknown which cell types encode and modulate sucrose's palatability. Studies in mice have shown that activation of GABAergic LHAVgat+ neurons evokes voracious eating; however, it is not known whether these neurons would be driving consumption by increasing palatability. Using optrode recordings, we measured sucrose's palatability while VGAT-ChR2 transgenic mice performed a brief access sucrose test. We found that a subpopulation of LHAVgat+ neurons encodes palatability by increasing (or decreasing) their activity as a function of the increment in licking responses evoked by sucrose concentrations. Optogenetic gain of function experiments, where mice were able to choose among available water, 3% and 18% sucrose solutions, uncovered that opto-stimulation of LHAVgat+ neurons consistently promoted higher intake of the most palatable stimulus (18% sucrose). In contrast, if they self-stimulated near the less palatable stimulus, some VGAT-ChR2 mice preferred water over 18% sucrose. Unexpectedly, activation of LHAVgat+ neurons increased quinine intake but only during water deprivation, since in sated animals, they failed to promote quinine intake or tolerate an aversive stimulus. Conversely, these neurons promoted overconsumption of sucrose when it was the nearest stimulus. Also, experiments with solid foods further confirmed that these neurons increased food interaction time with the most palatable food available. We conclude that LHAVgat+ neurons increase the drive to consume, but it is potentiated by the palatability and proximity of the tastant.

15.
Front Pharmacol ; 10: 1327, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31780943

RESUMEN

Obesity has become a serious public health problem. Although diet, surgery, and exercise are the primary treatments for obesity, these activities are often supplemented using appetite suppressants. A previous study reported that obesity specialists frequently prescribed a new drug combination for its treatment that includes phentermine (Phen; dopaminergic appetite suppressant), a serotonin (5-HT) precursor 5-hydroxytryptophan (5-HTP; an appetite suppressant that increases the 5-HT concentration), and carbidopa (CB; peripheral blocker of conversion of 5-HTP to 5-HT). Despite its widespread use, there is neither a preclinical study confirming the drug efficacy nor studies of its effects on the brain. To fill this gap, in rats for seven consecutive days, we administered Phen intraperitoneally at different doses either alone or in combination with a fixed dose of 5-HTP/CB. In a different group, we infused drugs via an intraperitoneal catheter while extracellular-recordings were performed in the nucleus accumbens shell (NAcSh), a brain region with dopamine-releasing effects that is involved in the action of appetite suppressants. We found that the triple-drug combination leads to greater weight-loss than each drug alone. Moreover, and as the treatment progresses, the triple drug combination partially reversed psychomotor side-effects induced by Phen. Electrophysiological results revealed that Phen alone evoked a net inhibitory imbalance in NAcSh population activity that correlated with the onset of psychomotor effects. In addition, and unlike the greater weight loss, the addition of 5-HTP/CB did not alter the Phen-evoked inhibitory imbalance in NAcSh responses. Subsequent experiments shed light on the underlying mechanism. That is the majority of NAcSh neurons modulated by 5-HTP/CB were suppressed by Phen. Notably, and despite acting via a different mechanism of action (DA for Phen vs. 5-HT for 5-HTP/CB), both drugs recruited largely overlapping NAcSh neuronal ensembles. These data suggest that the neural correlates of the greater weight loss could be located outside the NAcSh, in other brain circuits. Furthermore, we conclude that Phen + 5-HTP/CB is a potential treatment for overweight and obesity.

16.
Front Neurosci ; 13: 128, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30846926

RESUMEN

Extracellular recordings of electrical activity in freely moving rats are fundamental to understand brain function in health and disease. Such recordings require a small-size, lightweight device that includes movable electrodes (microdrive) to record either a new set of neurons every day or the same set of neurons over time. Ideally, microdrives should be easy to implant, allowing precise and smooth displacement of electrodes. The main caveat of most commercially available microdrives is their relatively short half-life span, in average ranging from weeks to a month. For most experiments, recording days-weeks is sufficient, but when the experiment depends on training animals for several months, it is crucial to develop new approaches. Here, we present a low-cost, reusable, and reimplantable device design as a solution to extend chronic recordings to long-term. This device is composed of a baseplate that is permanently fixed to the rodent's skull, as well as a reusable and replaceable microdrive that can be attached and detached from the baseplate, allowing its implantation and reimplantation. Reimplanting this microdrive is particularly convenient when no clear neuronal signal is present, or when the signal gradually decays across days. Our microdrive incorporates a mechanism for moving a 16 tungsten-wire bundle within a small (∼15 mm3) lightweight device (∼4 g). We present details of the design, manufacturing, and assembly processes. As a proof of concept, we show that recordings of the nucleus accumbens core (NAcc) in a freely behaving rat are stable over a month. Additionally, during a lever-press task, we found, as expected, that NAc single-unit activity was associated with rewarded lever presses. Furthermore, we also show that NAc shell (NAcSh) responses evoked by freely licking for sucrose, consistent with our previously published results, were conserved from a first implant to a second microdrive reimplant in the same rat, notably showing reimplantation is possible without overtly affecting the functional responses of the area of interest. In sum, here we present a novel microdrive design (low-cost, small size, and light weight) that can be used for long-term chronic recordings and reimplanted in freely behaving rats.

17.
Elife ; 72018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451686

RESUMEN

Sucrose's sweet intensity is one attribute contributing to the overconsumption of high-energy palatable foods. However, it is not known how sucrose intensity is encoded and used to make perceptual decisions by neurons in taste-sensitive cortices. We trained rats in a sucrose intensity discrimination task and found that sucrose evoked a widespread response in neurons recorded in posterior-Insula (pIC), anterior-Insula (aIC), and Orbitofrontal cortex (OFC). Remarkably, only a few Intensity-selective neurons conveyed the most information about sucrose's intensity, indicating that for sweetness the gustatory system uses a compact and distributed code. Sucrose intensity was encoded in both firing-rates and spike-timing. The pIC, aIC, and OFC neurons tracked movement direction, with OFC neurons yielding the most robust response. aIC and OFC neurons encoded the subject's choices, whereas all three regions tracked reward omission. Overall, these multimodal areas provide a neural representation of perceived sucrose intensity, and of task-related information underlying perceptual decision-making.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Toma de Decisiones/efectos de los fármacos , Sacarosa/administración & dosificación , Gusto/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Corteza Cerebral/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas , Sacarosa/química , Gusto/efectos de los fármacos
18.
Front Neurosci ; 12: 265, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29780300

RESUMEN

Although the palatability of sucrose is the primary reason for why it is over consumed, it is not well understood how it is encoded in the nucleus accumbens shell (NAcSh), a brain region involved in reward, feeding, and sensory/motor transformations. Similarly, untouched are issues regarding how an external auditory stimulus affects sucrose palatability and, in the NAcSh, the neuronal correlates of this behavior. To address these questions in behaving rats, we investigated how food-related auditory cues modulate sucrose's palatability. The goals are to determine whether NAcSh neuronal responses would track sucrose's palatability (as measured by the increase in hedonically positive oromotor responses lick rate), sucrose concentration, and how it processes auditory information. Using brief-access tests, we found that sucrose's palatability was enhanced by exteroceptive auditory cues that signal the start and the end of a reward epoch. With only the start cue the rejection of water was accelerated, and the sucrose/water ratio was enhanced, indicating greater palatability. However, the start cue also fragmented licking patterns and decreased caloric intake. In the presence of both start and stop cues, the animals fed continuously and increased their caloric intake. Analysis of the licking microstructure confirmed that auditory cues (either signaling the start alone or start/stop) enhanced sucrose's oromotor-palatability responses. Recordings of extracellular single-unit activity identified several distinct populations of NAcSh responses that tracked either the sucrose palatability responses or the sucrose concentrations by increasing or decreasing their activity. Another neural population fired synchronously with licking and exhibited an enhancement in their coherence with increasing sucrose concentrations. The population of NAcSh's Palatability-related and Lick-Inactive neurons were the most important for decoding sucrose's palatability. Only the Lick-Inactive neurons were phasically activated by both auditory cues and may play a sentinel role monitoring relevant auditory cues to increase caloric intake and sucrose's palatability. In summary, we found that auditory cues that signal the availability of sucrose modulate its palatability and caloric intake in a task dependent-manner and had neural correlates in the NAcSh. These findings show that exteroceptive cues associated with feeding may enhance positive hedonic oromotor-responses elicited by sucrose's palatability.

19.
Neurosci Lett ; 664: 51-57, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29128628

RESUMEN

We examined whether the optogenetic noise-photostimulation (ONP) of the barrel cortex (BC) of anesthetized Thy1-ChR2-YFP transgenic mice increases the neuronal multiunit-activity response evoked by whisker mechanical stimulation (whisker-evoked MUA). In all transgenic mice, we found that the signal-to-noise ratio (SNR) of such whisker-evoked MUA signals exhibited an inverted U-like shape as a function of the ONP level. Numerical simulations of a ChR2-expressing neuron model qualitatively support our experimental data. These results show that the application of an intermediate intensity of ONP in the brain can increase cortical somatosensory spike responses to whisker protraction. These findings suggest that ONP of the mice-BC could produce improvements in somatosensory perception to whisker stimulation.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Ruido/efectos adversos , Optogenética/métodos , Estimulación Luminosa/efectos adversos , Animales , Ratones , Ratones Transgénicos , Estimulación Física/efectos adversos , Corteza Somatosensorial/fisiología , Vibrisas/fisiología
20.
Front Neurosci ; 11: 464, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912671

RESUMEN

Stochastic resonance (SR) is an inherent and counter-intuitive mechanism of signal-to-noise ratio (SNR) facilitation in biological systems associated with the application of an intermediate level of noise. As a first step to investigate in detail this phenomenon in the somatosensory system, here we examined whether the direct application of noisy light on pyramidal neurons from the mouse-barrel cortex expressing a light-gated channel channelrhodopsin-2 (ChR2) can produce facilitation in somatosensory evoked field potentials. Using anesthetized Thy1-ChR2-YFP transgenic mice, and a new neural technology, that we called Brownian optogenetic-noise-photostimulation (BONP), we provide evidence for how BONP directly applied on the barrel cortex modulates the SNR in the amplitude of whisker-evoked field potentials (whisker-EFP). In all transgenic mice, we found that the SNR in the amplitude of whisker-EFP (at 30% of the maximal whisker-EFP) exhibited an inverted U-like shape as a function of the BONP level. As a control, we also applied the same experimental paradigm, but in wild-type mice, as expected, we did not find any facilitation effects. Our results show that the application of an intermediate intensity of BONP on the barrel cortex of ChR2 transgenic mice amplifies the SNR of somatosensory whisker-EFPs. This result may be relevant to explain the improvements found in sensory detection in humans produced by the application of transcranial-random-noise-stimulation (tRNS) on the scalp.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...