Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(1): 013401, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478436

RESUMEN

We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers. The molecule is formed by magnetoassociation of a Rb+Cs atom pair and subsequently transferred to the rovibrational ground state with an efficiency of 91(1)%. Species-specific tweezers are used to control the separation between the atom and molecule. The charge-dipole interaction causes blockade of the transition to the Rb(52s) Rydberg state, when the atom-molecule separation is set to 310(40) nm. The observed excitation dynamics are in good agreement with simulations using calculated interaction potentials. Our results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.

2.
Phys Rev Lett ; 130(22): 223401, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37327422

RESUMEN

We demonstrate the formation of a single RbCs molecule during the merging of two optical tweezers, one containing a single Rb atom and the other a single Cs atom. Both atoms are initially predominantly in the motional ground states of their respective tweezers. We confirm molecule formation and establish the state of the molecule formed by measuring its binding energy. We find that the probability of molecule formation can be controlled by tuning the confinement of the traps during the merging process, in good agreement with coupled-channel calculations. We show that the conversion efficiency from atoms to molecules using this technique is comparable to magnetoassociation.


Asunto(s)
Eritrocitos , Pinzas Ópticas , Movimiento (Física) , Probabilidad
3.
Opt Lett ; 40(23): 5570-3, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26625053

RESUMEN

We report on the observation of electromagnetically induced transparency (EIT) and absorption (EIA) of highly excited Rydberg states in thermal Cs vapor using a four-step excitation scheme. The advantage of this four-step scheme is that the final transition to the Rydberg state has a large dipole moment and one can achieve similar Rabi frequencies to two- or three-step excitation schemes using two orders of magnitude less laser power. This scheme enables new applications such as dephasing free Rydberg excitation. The observed lineshapes are in good agreement with simulations based on multilevel optical Bloch equations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA