Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 6282, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269231

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Opt Lett ; 42(21): 4327-4330, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29088155

RESUMEN

We demonstrate an x-ray beam splitter with high performances for multi-kilo-electron-volt photons. The device is based on diffraction on kinoform structures, which overcome the limitations of binary diffraction gratings. This beam splitter achieves a dynamical splitting ratio in the range 0-99.1% by tilting the optics and is tunable, here shown in a photon energy range of 7.2-19 keV. High diffraction efficiency of 62.6%, together with an extinction ratio of 0.6%, is demonstrated at 12.4 keV, with angular separation for the split beam of 0.5 mrad. This device can find applications in beam monitoring at synchrotrons, at x-ray free electron lasers for online diagnostics and beamline multiplexing and, possibly, as key elements for delay lines or ultrashort x-ray pulses manipulation.

3.
Sci Rep ; 7: 45618, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28374754

RESUMEN

Mixtures of different particle species are often investigated using the angular averages of the scattered X-ray intensity. The number of species is deduced by singular value decomposition methods. The full disentanglement of the data into per-species contributions requires additional knowledge about the system under investigation. We propose to exploit higher-order angular X-ray intensity correlations with a new computational protocol, which we apply to synchrotron data from two-species mixtures of two-dimensional static test nanoparticles. Without any other information besides the correlations, we demonstrate the assessment of particle species concentrations in the measured data sets, as well as the full ab initio reconstruction of both particle structures. The concept extends straightforwardly to more species and to the three-dimensional case, whereby the practical application will require the measurements to be performed at an X-ray free electron laser.

4.
Phys Rev Lett ; 115(22): 227003, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26650317

RESUMEN

Cooper pair splitting (CPS) is a process in which the electrons of the naturally occurring spin-singlet pairs in a superconductor are spatially separated using two quantum dots. Here, we investigate the evolution of the conductance correlations in an InAs CPS device in the presence of an external magnetic field. In our experiments the gate dependence of the signal that depends on both quantum dots continuously evolves from a slightly asymmetric Lorentzian to a strongly asymmetric Fano-type resonance with increasing field. These experiments can be understood in a simple three-site model, which shows that the nonlocal CPS leads to symmetric line shapes, while the local transport processes can exhibit an asymmetric shape due to quantum interference. These findings demonstrate that the electrons from a Cooper pair splitter can propagate coherently after their emission from the superconductor and how a magnetic field can be used to optimize the performance of a CPS device. In addition, the model calculations suggest that the estimate of the CPS efficiency in the experiments is a lower bound for the actual efficiency.

5.
Nano Lett ; 15(7): 4585-90, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26086240

RESUMEN

Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, that is, the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to 1.3 GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, for example, Majorana modes, by single electron spectroscopy and correlation experiments.

6.
Nat Commun ; 4: 1647, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23552062

RESUMEN

Knowledge of the structure of biological macromolecules, especially in their native environment, is crucial because of the close structure-function relationship. X-ray small-angle scattering is used to determine the shape of particles in solution, but the achievable resolution is limited owing to averaging over particle orientations. In 1977, Kam proposed to obtain additional structural information from the cross-correlation of the scattering intensities. Here we develop the method in two dimensions, and give a procedure by which the single-particle diffraction pattern is extracted in a model-independent way from the correlations. We demonstrate its application to a large set of synchrotron X-ray scattering images on ensembles of identical, randomly oriented particles of 350 or 200 nm in size. The obtained 15 nm resolution in the reconstructed shape is independent of the number of scatterers. The results are discussed in view of proposed 'snapshot' scattering by molecules in the liquid phase at X-ray free-electron lasers.


Asunto(s)
Estructura Molecular , Dispersión de Radiación , Microscopía Electrónica de Rastreo , Difracción de Rayos X
7.
Phys Rev Lett ; 109(15): 157203, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23102361

RESUMEN

The effect of x rays on an orbital and charge ordered epitaxial film of a Pr0.5Ca0.5MnO3 is presented. As the film is exposed to x rays, the antiferromagnetic response increases and concomitantly the conductivity of the film improve. These results are discussed in terms of a persistent x-ray induced doping, leading to a modification of the magnetic structure. This effect allows writing electronic and magnetic information in the film and represents a novel way of manipulating magnetism.

8.
Langmuir ; 28(25): 9899-905, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22631046

RESUMEN

Conventional gate oxide layers (e.g., SiO(2), Al(2)O(3), or HfO(2)) in silicon field-effect transistors (FETs) provide highly active surfaces, which can be exploited for electronic pH sensing. Recently, great progress has been achieved in pH sensing using compact integrateable nanowire FETs. However, it has turned out to be much harder to realize a true reference electrode, which--while sensing the electrostatic potential--does not respond to the proton concentration. In this work, we demonstrate a highly effective reference sensor, a so-called reference FET, whose proton sensitivity is suppressed by as much as 2 orders of magnitude. To do so, the Al(2)O(3) surface of a nanowire FET was passivated with a self-assembled monolayer of silanes with a long alkyl chain. We have found that a full passivation can be achieved only after an extended period of self-assembling lasting several days at 80 °C. We use this slow process to measure the number of active proton binding sites as a function of time by a quantitative comparison of the measured nonlinear pH-sensitivities to a theoretical model (site-binding model). Furthermore, we have found that a partially passivated surface can sense small changes in the number of active binding sites reaching a detection limit of δN(s) ≈ 170 µm(-2) Hz(-1/2) at 10 Hz and pH 3.

9.
Sci Rep ; 1: 57, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22355576

RESUMEN

A growing number of X-ray sources based on the free-electron laser (XFEL) principle are presently under construction or have recently started operation. The intense, ultrashort pulses of these sources will enable new insights in many different fields of science. A key problem is to provide x-ray optical elements capable of collecting the largest possible fraction of the radiation and to focus into the smallest possible focus. As a key step towards this goal, we demonstrate here the first nanofocusing of hard XFEL pulses. We developed diamond based Fresnel zone plates capable of withstanding the full beam of the world's most powerful x-ray laser. Using an imprint technique, we measured the focal spot size, which was limited to 320 nm FWHM by the spectral band width of the source. A peak power density in the focal spot of 4×10(17)W/cm(2) was obtained at 70 fs pulse length.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...