Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 384(6703): ado7082, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38935715

RESUMEN

Prion disease is caused by misfolding of the prion protein (PrP) into pathogenic self-propagating conformations, leading to rapid-onset dementia and death. However, elimination of endogenous PrP halts prion disease progression. In this study, we describe Coupled Histone tail for Autoinhibition Release of Methyltransferase (CHARM), a compact, enzyme-free epigenetic editor capable of silencing transcription through programmable DNA methylation. Using a histone H3 tail-Dnmt3l fusion, CHARM recruits and activates endogenous DNA methyltransferases, thereby reducing transgene size and cytotoxicity. When delivered to the mouse brain by systemic injection of adeno-associated virus (AAV), Prnp-targeted CHARM ablates PrP expression across the brain. Furthermore, we have temporally limited editor expression by implementing a kinetically tuned self-silencing approach. CHARM potentially represents a broadly applicable strategy to suppress pathogenic proteins, including those implicated in other neurodegenerative diseases.


Asunto(s)
Encéfalo , Metilación de ADN , Dependovirus , Silenciador del Gen , Histonas , Proteínas Priónicas , Animales , Humanos , Ratones , Encéfalo/metabolismo , Dependovirus/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Histonas/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Transgenes
2.
medRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746398

RESUMEN

Neurofilament light (NfL) concentration in cerebrospinal fluid (CSF) and blood serves as an important biomarker in neurology drug development. Changes in NfL are generally assumed to reflect changes in neuronal damage, while little is known about the clearance of NfL from biofluids. We observed an NfL increase of 3.5-fold in plasma and 5.7-fold in CSF in an asymptomatic individual at risk for genetic prion disease following 6 weeks' treatment with oral minocycline for a dermatologic indication. Other biomarkers remained normal, and proteomic analysis of CSF revealed that the spike was exquisitely specific to neurofilaments. NfL dropped nearly to normal levels 5 weeks after minocycline cessation, and the individual remained free of disease 2 years later. Plasma NfL in dermatology patients was not elevated above normal controls. Dramatically high plasma NfL (>500 pg/mL) was variably observed in some hospitalized individuals receiving minocycline. In mice, treatment with minocycline resulted in variable increases of 1.3- to 4.0-fold in plasma NfL, with complete washout 2 weeks after cessation. In neuron-microglia co-cultures, minocycline increased NfL concentration in conditioned media by 3.0-fold without any visually obvious impact on neuronal health. We hypothesize that minocycline does not cause or exacerbate neuronal damage, but instead impacts the clearance of NfL from biofluids, a potential confounder for interpretation of this biomarker.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA