Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 193: 110645, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642038

RESUMEN

Proton therapy is an external radiotherapy using proton beams with energies between 70 and 230 MeV to treat some type of tumours with outstanding benefits, due to its energy transfer plot. There is a growing demand of facilities taking up small spaces and Compact Proton Therapy Centers (CPTC), with one or two treatment rooms, supposing the technical response of manufacturers to this request. A large amount of stray radiation is yielded in the interaction of proton beam used in therapy, neutrons mainly, hence, optimal design of shielding and verifications must be carried out in commissioning phases. Currently, almost 50 proton centers are under construction and start up in several countries, including ten in Spain. In the present work the effectiveness of shielding in two CPTC was verified with the Monte Carlo code MCNP6 by calculating the ambient dose equivalent, H*(10) due to secondary neutrons, outside the enclosures and walls of the center. The facilities modelled were the two centers currently operating in Spain, the first, since December 2019, with a superconductor synchrocyclotron, and the second, since March 2020, with a compact synchrotron. The geometry and materials are based on dimensions proposed a priori by the vendors, therefore, the paper is focused on check the suitability of the materials and thickness of the walls of the centers. Several models of the radiation sources were simulated, starting from a conservative assumptions, followed by more realistic scenarios. In all cases, the results reached for the ambient dose equivalent, H*(10), were below 1 mSv/year, which is the legal limit considered for the public in international references. Finally, considering that the recent ICRU Report 95 proposes changes in the operational quantities, the dose outside shieldingt has been evaluated in terms of the new next area surveillance quantity, H*, known as ambient dose, in the process of implementation.

2.
Appl Radiat Isot ; 169: 109279, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33451908

RESUMEN

Proton therapy (PT) is an external radiotherapy using proton beams with energies between 70 and 230 MeV to treat some type of tumours with outstanding benefits, due to its energy transfer plot. There is a growing demand of facilities taking up small spaces and Compact Proton Therapy Centers (CPTC), with one or two treatment rooms, supposing the technical response of manufacturers to this request. A large amount of stray radiation is produced in the interaction of protons used in therapy, neutrons mainly, hence, optimal design of shielding and verifications must be carried out in commissioning stages. Currently, almost 50 CPTC are under construction and start up in many countries, including several in Spain. In the present work, the effectiveness of shielding in a CPTC was verified with the Monte Carlo code MCNP6 by calculating the ambient dose equivalent, H*(10) due to secondary neutrons, outside the enclosures and walls of the center. The facility modelled was similar to one planned to start operating in 2019 in Spain, a CPTC, made up of a superconducting synchrocyclotron and one treatment room, with a configuration standard, shielding and width of barriers based on dimensions proposed a priori by the vendor. Therefore, the paper is focused in check the suitability of the materials and thickness of the walls of the center and develop the assessment of enclosures. Several models of the radiation sources and type of concrete in walls were simulated, starting from a conservative assumptions, followed by more realistic models. In all cases, the results were below 1 mSv/year, which is the international legal limit considered for the general public. This work is part of the project Contributions to Shielding and Dosimetry of Neutrons in Compact Proton Therapy Centers (CPTC).


Asunto(s)
Neutrones , Terapia de Protones , Protección Radiológica , Dosificación Radioterapéutica , Humanos , Método de Montecarlo , Incertidumbre
3.
Appl Radiat Isot ; 167: 109437, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33007735

RESUMEN

FANT is the acronym of Enhanced Thermal Neutron Source (Fuente Ampliada de Neutrones Térmicos, in Spanish). This is a parallelepiped box of high-density polyethylene moderator and an isotopic neutron source. The moderator has a cylindrical irradiation chamber where a rather uniform thermal neutron flux is obtained. The FANT design was previously optimized and the neutron spectra were estimated by Monte Carlo calculations with the MCNP6.1 code. To check the characteristics of the FANT thermal neutron field, measurements have been performed at the reference point inside the irradiation chamber with a Bonner sphere spectrometer holding a small 6LiI(Eu) thermal neutron detector. To unfold the neutron spectrum BUNKIUT with UTA4 response matrix and NSDann Ver 4.0 codes were used. Some issues have been found and recommendations are made about the use of large BSS inside narrow spaces, and about the capacity of NSDann code to unfold these kind of spectra. However, the results confirm that the moderation process in FANT is very effective and allows obtaining useful thermal neutron fluence rates.

4.
Appl Radiat Isot ; 152: 115-126, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31295682

RESUMEN

Compact Proton Therapy Centers, CPTC, have a single treatment room, and are technologically more affordable, smaller, advanced and easier to use. From a radiological protection point of view, the leading concern in CPTC are interactions of protons with components of the facility and patients that yield a broad emission of secondary particles, mainly high-energy neutrons, up to 230 MeV, and photons. Optimal design of shielding involves theoretical assumptions in the design phase and, consequently, experimental measurements with extended range neutron detectors must be carried out in the facility during the commissioning period to verify the design, assumptions and building of the enclosures. There are almost 50 CPTC under construction and planning around the world, hence the improvement of methodologies to verify the shielding and to evaluate the dose to workers and general public in CPTC is a trending issue. The aim of this work was to evaluate and compare the response of two commercial extended range REM meters, WENDI-II and LUPIN-II, for their application in shielding verification and radiation area monitoring in CPTC facilities, by estimating the ambient dose equivalent, H*(10), through the Monte Carlo code MCNP6. The results have been compared with previous works. Likewise, the performance evaluation of these devices in continuous energy neutron field have been carried out, using the AmBe/241 neutron source of the Neutronics Hall (NH) of the Neutron Measurements Laboratory of the Energy Engineering Department of Universidad Politecnica de Madrid (LMN-UPM), through Monte Carlo simulation with the MCNP6 code and experimental measurements. The work is framed into the project Contributions to Shielding and Dosimetry of Neutrons in CPTC.


Asunto(s)
Benchmarking , Dosímetros de Radiación/normas , Monitoreo de Radiación/métodos , Protección Radiológica/métodos , Simulación por Computador , Humanos , Método de Montecarlo , Neutrones
5.
Appl Radiat Isot ; 151: 150-156, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31181456

RESUMEN

A thermal neutron system intended to be used in neutron activation analysis has been designed by Monte Carlo methods. The device is based on a241Am/9Be neutron source of 111 GBq, placed inside a cylindrical cavity open inside a parallelepiped of moderator material. Three different moderator materials, water, graphite and high-density polyethylene (HDPE), were simulated to check what is the most suitable for the detection system, concluding that HDPE reach the better performance. The device achieves an increased thermal neutron flux by taking advantage of neutron moderation in the polyethylene and the neutron scattering in the irradiation chamber walls. The thermal fluence rates obtained were 904 cm-2  s-1, i.e. 8.144 cm-2 s-1 GBq-1, with a fraction of thermal neutrons at the best point of 83% of pristine fast neutrons emitted by the source. The device has been designed by Monte Carlo techniques using the MCNP6 code, and the main tasks developed were to select the moderator material and to maximize the thermal neutrons flux in the irradiation chamber.

6.
Appl Radiat Isot ; 151: 19-24, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31154075

RESUMEN

Neutron techniques to characterize materials have a wide range of applications, one of the major developments being the identification of terrorist threats with chemical, biological, radiological, nuclear and explosives (CBRNE) materials. In this work, a thermal neutron irradiation system, using a241Am/9Be source of 111 GBq inside polyethylene cylindrical moderators, has been designed, built and tested. The geometry of moderator and the neutron source position were fixed trying to maximize the thermal neutrons flux emitted from the system. Therefore, the system is in fact a thermalized neutron source taking advantage of the backscattered neutrons, achieving thermal fluence rates of up to 5.3x102 cm-2 s-1, with dominantly thermal spectra. Samples can be placed there for several hours and thereafter be measured to identify their component elements by NAA (Neutron Activation Analysis). Through Monte Carlo techniques employing the MCNP6 code (Pelowitz et al., 2014), four different configurations with polyethylene cylinders were simulated to choose the most adequate geometry. The theoretical model was then replicated in the neutronics hall of the Neutron Measurements Laboratory of the Energy Engineering Department of Universidad Politécnica de Madrid (LMN-UPM), carrying out experimental measurements using a BF3 neutron detector. A high agreement between MCNP6 results and the experimental values measured was observed. Consequently, the system developed could be employed in future laboratory experiments, both for the identification of trace substances by NAA and for the calibration of neutron detection equipment.

7.
Appl Radiat Isot ; 141: 167-175, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29510959

RESUMEN

Detection of hidden explosives is of utmost importance for homeland security. Several configurations of an Explosives Detection System (EDS) to intercept hidden threats, made up with a Deuterium-Deuterium (D-D) compact neutron generator and NaI (Tl) scintillation detectors, have been evaluated using MCNP6 code. The system's response to various samples of explosives, such as RDX and Ammonium Nitrate, is analysed. The D-D generator is able to produce fast neutrons with 2.5 MeV energy in a maximum yield of 1010 n/s. It is surrounded by high-density polyethylene to thermalize the fast neutrons and to optimize interactions with the sample inspected, whose emission of gamma rays gives a characteristic spectrum of the elements that constitute it. This procedure allows to determine its chemical composition and to identify the type of substance. The necessary shielding is evaluated to estimate its thicknesses depending on the admissible dose of operation, using lead and polyethylene. The results show that its functionality is promising in the field of national security for explosives inspection.

8.
Appl Radiat Isot ; 117: 58-64, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26994753

RESUMEN

The response of a scintillation neutron detector of ZnS(Ag) with 10B was calculated, using the MCNPX Monte Carlo Code. The detector consists of four panels of polymethyl methacrylate (PMMA) and five thin layers of ~0.017cm thick 10B+ZnS(Ag) in contact with the PMMA. The response was calculated for the bare detector and with different thicknesses of High Density Polyethylene, HDPE, moderator for 29 monoenergetic sources as well as 241AmBe and 252Cf neutrons sources. In these calculations the reaction rate 10B(n, α)7Li and the neutron fluence in the sensitive area of the detector 10B+ZnS(Ag) was estimated. Measurements were made at the Neutron Measurements Laboratory, Universidad Politécnica de Madrid, LMN-UPM, to quantify the detections in counts per second in response to a 252Cf neutron source separated 200cm. The MCNPX computations were compared with measurements to estimate the efficiency of ZnS(Ag) for detecting the α that is created in the 10B(n, α)7Li reaction. After validating new models with different geometries it will be possible to improve the detector response trying to achieve a sensitivity of 2.5cps-ng252Cf comparable with the response requirements for 3He detectors installed in the Radiation Portal Monitors, RPMs. This type of detector can be considered an alternative to the 3He detectors for detection of Special Nuclear Material, SNM.

9.
Appl Radiat Isot ; 100: 84-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25468287

RESUMEN

Monte Carlo calculations were carried out to characterize the neutron field produced by the calibration neutron sources of the Neutron Standards Laboratory at the Research Center for Energy, Environment, and Technology (CIEMAT) in Spain. For (241)AmBe and (252)Cf neutron sources, the neutron spectra, the ambient dose equivalent rates and the total neutron fluence rates were estimated. In the calibration hall, there are several items that modify the neutron field. To evaluate their effects different cases were used, from point-like source in vacuum up to the full model. Additionally, using the full model, the neutron spectra were estimated to different distances along the bench; with these spectra, the total neutron fluence and the ambient dose equivalent rates were calculated. The hall walls induce the largest changes in the neutron spectra and the respective integral quantities. The free-field neutron spectrum is modified due the room return effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...