Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 12(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36295665

RESUMEN

Carotenoids are potent antioxidants with a wide range of biomedical applications. However, their delivery into human cells is challenging and relatively inefficient. While the use of natural water-soluble carotenoproteins capable to reversibly bind carotenoids and transfer them into membranes is promising, the quantitative estimation of the delivery remains unclear. In the present work, we studied echinenone (ECN) delivery by cyanobacterial carotenoprotein AnaCTDH (C-terminal domain homolog of the Orange Carotenoid Protein from Anabaena), into liposome membranes labelled with BODIPY fluorescent probe. We observed that addition of AnaCTDH-ECN to liposomes led to the significant changes in the fast-kinetic component of the fluorescence decay curve, pointing on the dipole-dipole interactions between the probe and ECN within the membrane. It may serve as an indirect evidence of ECN delivery into membrane. To study the delivery in detail, we carried out molecular dynamics modeling of the localization of ECN within the lipid bilayer and calculate its orientation factor. Next, we exploited FRET to assess concentration of ECN delivered by AnaCTDH. Finally, we used time-resolved fluorescence anisotropy to assess changes in microviscosity of liposomal membranes. Incorporation of liposomes with ß-carotene increased membrane microviscosity while the effect of astaxanthin and its mono- and diester forms was less pronounced. At temperatures below 30 °C addition of AnaCTDH-ECN increased membrane microviscosity in a concentration-dependent manner, supporting the protein-mediated carotenoid delivery mechanism. Combining all data, we propose FRET-based analysis and assessment of membrane microviscosity as potent approaches to characterize the efficiency of carotenoids delivery into membranes.

2.
Anal Biochem ; 587: 113445, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31542342

RESUMEN

Lipopolysaccharides (LPS) are the Gram-negative bacteria cell wall components capable to induce the system inflammatory response even at picomolar concentrations. LPS detection at these concentrations is necessary to develop new sorbents for the efficient purification of the biological fluids. LAL-test widely used for LPS concentration estimation is based on the LPS biological activity measurement and thus may depend on the LPS concentration in a non-linear way. Here we propose a new explicit method for the LPS concentration measurement based on fluorescently labeled LPS and direct photon counting and develop the new protocol for LPS adsorption efficiency measurement. Following the suggested protocol in the experiments on novel sorbents, we demonstrate that LPS adsorption at small biologically relevant concentrations is non-Langmuir.


Asunto(s)
Lipopolisacáridos/análisis , Adsorción , Estructura Molecular
3.
Biochim Biophys Acta Bioenerg ; 1860(2): 121-128, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30465750

RESUMEN

Cyanobacteria are thought to be responsible for pioneering dioxygen production and the so-called "Great Oxygenation Event" that determined the formation of the ozone layer and the ionosphere restricting ionizing radiation levels reaching our planet, which increased biological diversity but also abolished the necessity of radioprotection. We speculated that ancient protection mechanisms could still be present in cyanobacteria and studied the effect of ionizing radiation and space flight during the Foton-M4 mission on Synechocystis sp. PCC6803. Spectral and functional characteristics of photosynthetic membranes revealed numerous similarities of the effects of α-particles and space flight, which both interrupted excitation energy transfer from phycobilisomes to the photosystems and significantly reduced the concentration of phycobiliproteins. Although photosynthetic activity was severely suppressed, the effect was reversible, and the cells could rapidly recover from the stress. We suggest that the actual existence and the uncoupling of phycobilisomes may play a specific role not only in photo-, but also in radioprotection, which could be crucial for the early evolution of Life on Earth.


Asunto(s)
Cianobacterias/química , Transferencia de Energía , Ficobilisomas/fisiología , Protectores contra Radiación/química , Origen de la Vida , Fotosíntesis , Ficobiliproteínas/fisiología , Radiación Ionizante , Vuelo Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...