Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 10(10): 5838-5844, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35497407

RESUMEN

We successfully synthesized a size-controlled hybrid of layered double hydroxide (LDH) platelets and Gd(OH)3 nanorods through the reverse micelle method. Under controlled synthetic conditions, the hybrid was developed to a quasi-core-shell structure, where the Gd(OH)3 nanorods were covered by the LDH platelet assembly, and this was investigated by X-ray diffraction and high-resolution transmission electron microscopy. The zeta potential measurement for the hybrid revealed that Gd(OH)3 was surrounded by LDH moieties. According to dynamic light scattering, the hydrodynamic radius of the hybrid was uniformly controlled under 150 nm, which was comparable to that of one Gd(OH)3 nanorod surrounded by an LDH moiety. Thus, the obtained hybrid exhibited a maximum Hounsfield unit of 180 at a concentration of 5 mg mL-1, implying its potential as a computed tomography contrast agent. The magnetic resonance relaxivities of the hybrid were examined at pH 5 and 7, simulating lysosomal and plasma conditions; the r 1 values were 7.3 and 2.9, respectively, which were highly dependent on the physiological conditions.

2.
Inorg Chem ; 59(4): 2163-2170, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31887019

RESUMEN

Silver metal nanostructures have gained much interest, due to their utility in various fields, based on their unique properties at nanosize. Tremendous research efforts have been made to establish synthetic methods to manipulate their shape and size. The most challenging synthesis in silver nanostructures has been known as a plate-like shape having a few nanometers size thickness and high aspect ratio. Here, we demonstrate a novel and facile synthetic route for ultrathin (≤1 nm) silver nanosheets using silver carboxylthiolate as precursor. Such silver thiolate formed single-layered colloid in aqueous basic solution, due to the electrostatic repulsion between carboxylate groups. These single layers of silver thiolates were stabilized within the interlayer space of layered double hydroxide (LDH). When silver thiolates confined in LDHs were calcined under reductive atmosphere, the LDHs effectively suppressed the vertical growth of silver crystals.

3.
Biomater Res ; 20: 1, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26865985

RESUMEN

BACKGROUND: In order to obtain biomaterials with controllable physicochemical properties, hybrid biomaterials composed of biocompatible biopolymers and ceramic nanoparticles have attracted interests. In this study, we prepared biopolymer/ceramic hybrids consisting of various natural biopolymers and layered double hydroxide (LDH) ceramic nanoparticles via an electrophoretic method. We studied the structures and controlled-release properties of these materials. RESULTS AND DISCUSSION: X-ray diffraction (XRD) patterns and X-ray absorption spectra (XAS) showed that LDH nanoparticles were formed in a biopolymer hydrogel through electrophoretic reaction. Scanning electron microscopic (SEM) images showed that the ceramic nanoparticles were homogeneously distributed throughout the hydrogel matrix. An antioxidant agent (i.e., ferulic acid) was loaded onto agarose/LDH and gelatin/LDH hybrids, and the time-dependent release of ferulic acid was investigated via high-performance liquid chromatography (HPLC) for kinetic model fitting. CONCLUSIONS: Biopolymer/LDH hybrid materials that were prepared by electrophoretic method created a homogeneous composite of two components and possessed controllable drug release properties according to the type of biopolymer.

4.
Nanomaterials (Basel) ; 6(2)2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28344282

RESUMEN

Composite hydrogels were prepared that consisted of quasi-colloidal layered double hydroxide (LDH) nanoparticles and agarose via the electrophoretic method, starting from three different agarose concentrations of 0.5, 1, and 2 wt/v%. The composite hydrogel was identified to have a uniform distribution of LDH nanoparticles in agarose matrix. Microscopic studies revealed that the composite hydrogel had a homogeneous quasi-colloidal state of LDHs, while the simple mixture of LDH powder and agarose hydrogels did not. It was determined that agarose concentration of the starting hydrogel did not significantly influence the amount of LDH that developed in the composite. The chromate scavenging efficiency of the composite hydrogel and corresponding agarose or mixture hydrogel was evaluated with respect to time, and chromate concentration. In general, the composite hydrogels exhibited much higher chromate removal efficacy compared with agarose or mixture hydrogels. Through estimating chromate adsorption by LDH moiety in the composite or mixture hydrogel, it was suggested that the agarose component facilitated the stability and dispersibility of the quasi-colloidal state of LDH nanoparticles in the composite resulting in high adsorption efficacy. From Freundlich isotherm adsorption fitting, composites were determined to possess beneficial cooperative adsorption behavior with a high adsorption coefficient.

5.
Beilstein J Nanotechnol ; 7: 1928-1935, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144541

RESUMEN

Guanosine monophosphates (GMPs) were intercalated into the interlayer space of layered double hydroxides (LDHs) and the molecular arrangement of GMP was controlled in LDHs. The intercalation conditions such as GMP/LDH molar ratio and reaction temperature were systematically adjusted. When the GMP/LDH molar ratio was 1:2, which corresponds to the charge balance between positive LDH sheets and GMP anions, GMP molecules were well-intercalated to LDH. At high temperature (100 and 80 °C), a single GMP molecule existed separately in the LDH interlayer. On the other hand, at lower temperature (20, 40 and 60 °C), GMPs tended to form ribbon-type supramolecular assemblies. Differential scanning calorimetry showed that the ribbon-type GMP assembly had an intermolecular interaction energy of ≈101 kJ/mol, which corresponds to a double hydrogen bond between guanosine molecules. Once stabilized, the interlayer GMP orientations, single molecular and ribbon phase, were successfully converted to the other phase by adjusting the external environment by stoichiometry or temperature control.

6.
Colloids Surf B Biointerfaces ; 127: 137-42, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25668417

RESUMEN

We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH.


Asunto(s)
Nanopartículas/química , Tamaño de la Partícula , Óxido de Zinc/química , Concentración de Iones de Hidrógeno , Propiedades de Superficie , Factores de Tiempo , Espectroscopía de Absorción de Rayos X , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA