Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 623(7986): 296-300, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938704

RESUMEN

Systematic studies1-4 have revealed hundreds of ultra-compact dwarf galaxies (UCDs5) in the nearby Universe. With half-light radii rh of approximately 10-100 parsecs and stellar masses M* ≈ 106-108 solar masses, UCDs are among the densest known stellar systems6. Although similar in appearance to massive globular clusters7, the detection of extended stellar envelopes4,8,9, complex star formation histories10, elevated mass-to-light ratio11,12 and supermassive black holes13-16 suggest that some UCDs are remnant nuclear star clusters17 of tidally stripped dwarf galaxies18,19, or even ancient compact galaxies20. However, only a few objects have been found in the transient stage of tidal stripping21,22, and this assumed evolutionary path19 has never been fully traced by observations. Here we show that 106 galaxies in the Virgo cluster have morphologies that are intermediate between normal, nucleated dwarf galaxies and single-component UCDs, revealing a continuum that fully maps this morphological transition and fills the 'size gap' between star clusters and galaxies. Their spatial distribution and redder colour are also consistent with stripped satellite galaxies on their first few pericentric passages around massive galaxies23. The 'ultra-diffuse' tidal features around several of these galaxies directly show how UCDs are forming through tidal stripping and that this evolutionary path can include an early phase as a nucleated ultra-diffuse galaxy24,25. These UCDs represent substantial visible fossil remnants of ancient dwarf galaxies in galaxy clusters, and more low-mass remnants probably remain to be found.

2.
Science ; 341(6149): 994-7, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23990557

RESUMEN

Trojan objects share a planet's orbit, never straying far from the triangular Lagrangian points, 60° ahead of (L4) or behind (L5) the planet. We report the detection of a Uranian Trojan; in our numerical integrations, 2011 QF99 oscillates around the Uranian L4 Lagrange point for >70,000 years and remains co-orbital for ~1 million years before becoming a Centaur. We constructed a Centaur model, supplied from the transneptunian region, to estimate temporary co-orbital capture frequency and duration (to a factor of 2 accuracy), finding that at any time 0.4 and 2.8% of the population will be Uranian and Neptunian co-orbitals, respectively. The co-orbital fraction (~2.4%) among Centaurs in the International Astronomical Union Minor Planet Centre database is thus as expected under transneptunian supply.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...