Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Forensic Sci Int Genet ; 71: 103047, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38598919

RESUMEN

Massively parallel sequencing (MPS) is increasingly applied in forensic short tandem repeat (STR) analysis. The presence of stutter artefacts and other PCR or sequencing errors in the MPS-STR data partly limits the detection of low DNA amounts, e.g., in complex mixtures. Unique molecular identifiers (UMIs) have been applied in several scientific fields to reduce noise in sequencing. UMIs consist of a stretch of random nucleotides, a unique barcode for each starting DNA molecule, that is incorporated in the DNA template using either ligation or PCR. The barcode is used to generate consensus reads, thus removing errors. The SiMSen-Seq (Simple, multiplexed, PCR-based barcoding of DNA for sensitive mutation detection using sequencing) method relies on PCR-based introduction of UMIs and includes a sophisticated hairpin design to reduce unspecific primer binding as well as PCR protocol adjustments to further optimize the reaction. In this study, SiMSen-Seq is applied to develop a proof-of-concept seven STR multiplex for MPS library preparation and an associated bioinformatics pipeline. Additionally, machine learning (ML) models were evaluated to further improve UMI allele calling. Overall, the seven STR multiplex resulted in complete detection and concordant alleles for 47 single-source samples at 1 ng input DNA as well as for low-template samples at 62.5 pg input DNA. For twelve challenging mixtures with minor contributions of 10 pg to 150 pg and ratios of 1-15% relative to the major donor, 99.2% of the expected alleles were detected by applying the UMIs in combination with an ML filter. The main impact of UMIs was a substantially lowered number of artefacts as well as reduced stutter ratios, which were generally below 5% of the parental allele. In conclusion, UMI-based STR sequencing opens new means for improved analysis of challenging crime scene samples including complex mixtures.

2.
Nat Commun ; 13(1): 1852, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388013

RESUMEN

Ribosome mediated mRNA translation is central to life. The cycle of translation, however, has been characterized mostly using reconstituted systems, with only few techniques applicable for studies in the living cell. Here we describe a live-cell ribosome-labeling method, which allows us to characterize the whole processes of finding and translating an mRNA, using single-molecule tracking techniques. We find that more than 90% of both bacterial ribosomal subunits are engaged in translation at any particular time, and that the 30S and 50S ribosomal subunits spend the same average time bound to an mRNA, revealing that 30S re-initiation on poly-cistronic mRNAs is not prevalent in E. coli. Instead, our results are best explained by substantial 70S re-initiation of translation of poly-cistronic mRNAs, which is further corroborated by experiments with translation initiation inhibitors. Finally, we find that a variety of previously described orthogonal ribosomes, with altered anti-Shine-Dalgarno sequences, show significant binding to endogenous mRNAs.


Asunto(s)
Escherichia coli , Biosíntesis de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , ARN Mensajero/metabolismo , Ribosomas/metabolismo
4.
Nature ; 597(7876): 426-429, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471288

RESUMEN

Homologous recombination is essential for the accurate repair of double-stranded DNA breaks (DSBs)1. Initially, the RecBCD complex2 resects the ends of the DSB into 3' single-stranded DNA on which a RecA filament assembles3. Next, the filament locates the homologous repair template on the sister chromosome4. Here we directly visualize the repair of DSBs in single cells, using high-throughput microfluidics and fluorescence microscopy. We find that, in Escherichia coli, repair of DSBs between segregated sister loci is completed in 15 ± 5 min (mean ± s.d.) with minimal fitness loss. We further show that the search takes less than 9 ± 3 min (mean ± s.d) and is mediated by a thin, highly dynamic RecA filament that stretches throughout the cell. We propose that the architecture of the RecA filament effectively reduces search dimensionality. This model predicts a search time that is consistent with our measurement and is corroborated by the observation that the search time does not depend on the length of the cell or the amount of DNA. Given the abundance of RecA homologues5, we believe this model to be widely conserved across living organisms.


Asunto(s)
ADN Bacteriano/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Modelos Biológicos , Rec A Recombinasas/metabolismo , Reparación del ADN por Recombinación , Homología de Secuencia de Ácido Nucleico , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/metabolismo , Factores de Tiempo
5.
Science ; 355(6325): 606-612, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28008086

RESUMEN

We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required as compared to popular centroid localization. In superresolution microscopy, MINFLUX attained ~1-nm precision, resolving molecules only 6 nanometers apart. MINFLUX tracking of single fluorescent proteins increased the temporal resolution and the number of localizations per trace by a factor of 100, as demonstrated with diffusing 30S ribosomal subunits in living Escherichia coli As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond.


Asunto(s)
Proteínas Luminiscentes/análisis , Microscopía Fluorescente/métodos , Nanotecnología/métodos , Imagen Óptica/métodos , Imagen Individual de Molécula/métodos , ADN/química , Escherichia coli/química , Fotones , Subunidades Ribosómicas Pequeñas Bacterianas/química
6.
Proc Natl Acad Sci U S A ; 111(31): 11413-8, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25056965

RESUMEN

Biochemical and genetic data show that ribosomes closely follow RNA polymerases that are transcribing protein-coding genes in bacteria. At the same time, electron and fluorescence microscopy have revealed that ribosomes are excluded from the Escherichia coli nucleoid, which seems to be inconsistent with fast translation initiation on nascent mRNA transcripts. The apparent paradox can be reconciled if translation of nascent mRNAs can start throughout the nucleoid before they relocate to the periphery. However, this mechanism requires that free ribosomal subunits are not excluded from the nucleoid. Here, we use single-particle tracking in living E. coli cells to determine the fractions of free ribosomal subunits, classify individual subunits as free or mRNA-bound, and quantify the degree of exclusion of bound and free subunits separately. We show that free subunits are not excluded from the nucleoid. This finding strongly suggests that translation of nascent mRNAs can start throughout the nucleoid, which reconciles the spatial separation of DNA and ribosomes with cotranscriptional translation. We also show that, after translation inhibition, free subunit precursors are partially excluded from the compacted nucleoid. This finding indicates that it is active translation that normally allows ribosomal subunits to assemble on nascent mRNAs throughout the nucleoid and that the effects of translation inhibitors are enhanced by the limited access of ribosomal subunits to nascent mRNAs in the compacted nucleoid.


Asunto(s)
Rastreo Celular/métodos , ADN Bacteriano/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Subunidades Ribosómicas/metabolismo , Eritromicina/farmacología , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Microfluídica , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...