Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Opin Biol Ther ; 24(5): 351-363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38764393

RESUMEN

INTRODUCTION: There is a need for new therapies that can enhance response rates and broaden the number of cancer indications where immunotherapies provide clinical benefit. CD40 targeting therapies provide an opportunity to meet this need by promoting priming of tumor-specific T cells and reverting the suppressive tumor microenvironment. This is supported by emerging clinical evidence demonstrating the benefits of immunotherapy with CD40 antibodies in combination with standard of care chemotherapy. AREAS COVERED: This review is focused on the coming wave of next-generation CD40 agonists aiming to improve efficacy and safety, using new approaches and formats beyond monospecific antibodies. Further, the current understanding of the role of different CD40 expressing immune cell populations in the tumor microenvironment is reviewed. EXPERT OPINION: There are multiple promising next-generation approaches beyond monospecific antibodies targeting CD40 in immuno-oncology. Enhancing efficacy is the most important driver for this development, and approaches that maximize the ability of CD40 to both remodel the tumor microenvironment and boost the anti-tumor T cell response provide great opportunities to benefit cancer patients. Enhanced understanding of the role of different CD40 expressing immune cells in the tumor microenvironment may facilitate more efficient clinical development of these compounds.


Asunto(s)
Antígenos CD40 , Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Antígenos CD40/agonistas , Antígenos CD40/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Animales , Microambiente Tumoral/inmunología
2.
MAbs ; 16(1): 2330113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527972

RESUMEN

Despite the large number of existing bispecific antibody (bsAb) formats, the generation of novel bsAbs is still associated with development and bioprocessing challenges. Here, we present RUBY, a novel bispecific antibody format that allows rapid generation of bsAbs that fulfill key development criteria. The RUBYTM format has a 2 + 2 geometry, where two Fab fragments are linked via their light chains to the C-termini of an IgG, and carries mutations for optimal chain pairing. The unique design enables generation of bsAbs with mAb-like attributes. Our data demonstrate that RUBY bsAbs are compatible with small-scale production systems for screening purposes and can be produced at high yields (>3 g/L) from stable cell lines. The bsAbs produced are shown to, in general, contain low amounts of aggregates and display favorable solubility and stress endurance profiles. Further, compatibility with various IgG isotypes is shown and tailored Fc gamma receptor binding confirmed. Also, retained interaction with FcRn is demonstrated to translate into a pharmacokinetic profile in mice and non-human primates that is comparable to mAb controls. Functionality of conditional active RUBY bsAbs is confirmed in vitro. Anti-tumor effects in vivo have previously been demonstrated, and shown to be superior to a comparable mAb, and here it is further shown that RUBY bsAbs penetrate and localize to tumor tissue in vivo. In all, the RUBY format has attractive mAb-like attributes and offers the possibility to mitigate many of the development challenges linked to other bsAb formats, facilitating both high functionality and developability.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Animales , Ratones , Línea Celular , Inmunoglobulina G/genética
3.
Cells ; 12(19)2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37830579

RESUMEN

CD40-targeting therapies can enhance the dendritic cell priming of tumor-specific T cells and repolarize intratumoral macrophages to alleviate the tumoral immunosuppressive environment and remodel the extracellular matrix. Mitazalimab is a potent agonistic CD40 monoclonal IgG1 antibody currently under clinical development. This study used RNA sequencing of blood samples from a subset of patients from a Phase I trial with mitazalimab (NCT02829099) to assess peripheral pharmacodynamic activity. We found that mitazalimab induced transient peripheral transcriptomic alterations (at 600 µg/kg and 900 µg/kg dose administered intravenously), which mainly were attributed to immune activation. In particular, the transcriptomic alterations showed a reduction in effector cells (e.g., CD8+ T cells and natural killer cells) and B cells peripherally with the remaining cells (e.g., dendritic cells, monocytes, B cells, and natural killer cells) showing transcription profiles consistent with activation. Lastly, distinct patient subgroups based on the pattern of transcriptomic alterations could be identified. In summary, the data presented herein reinforce the anticipated mode of action of mitazalimab and support its ongoing clinical development.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Monoclonales , Linfocitos T CD8-positivos , Neoplasias , Humanos , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antígenos CD40/inmunología , Neoplasias/tratamiento farmacológico , Análisis de Secuencia de ARN
4.
J Immunother Cancer ; 10(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36323431

RESUMEN

BACKGROUND: Indications with poor T-cell infiltration or deficiencies in T-cell priming and associated unresponsiveness to established immunotherapies represent an unmet medical need in oncology. CD40-targeting therapies designed to enhance antigen presentation, generate new tumor-specific T cells, and activate tumor-infiltrating myeloid cells to remodel the tumor microenvironment, represent a promising opportunity to meet this need. In this study, we present the first in vivo data supporting a role for tumor-associated antigen (TAA)-mediated uptake and cross-presentation of tumor antigens to enhance tumor-specific T-cell priming using CD40×TAA bispecific antibodies, a concept we named Neo-X-Prime. METHODS: Bispecific antibodies targeting CD40 and either of two cell-surface expressed TAA, carcinoembryonic antigen-related cell adhesion molecule 5 (CEA) or epithelial cell adhesion molecule (EpCAM), were developed in a tetravalent format. TAA-conditional CD40 agonism, activation of tumor-infiltrating immune cells, antitumor efficacy and the role of delivery of tumor-derived material such as extracellular vesicles, tumor debris and exosomes by the CD40×TAA bispecific antibodies were demonstrated in vitro using primary human and murine cells and in vivo using human CD40 transgenic mice with different tumor models. RESULTS: The results showed that the CD40×TAA bispecific antibodies induced TAA-conditional CD40 activation both in vitro and in vivo. Further, it was demonstrated in vitro that they induced clustering of tumor debris and CD40-expressing cells in a dose-dependent manner and superior T-cell priming when added to dendritic cells (DC), ovalbumin (OVA)-specific T cells and OVA-containing tumor debris or exosomes. The antitumor activity of the Neo-X-Prime bispecific antibodies was demonstrated to be significantly superior to the monospecific CD40 antibody, and the resulting T-cell dependent antitumor immunity was directed to tumor antigens other than the TAA used for targeting (EpCAM). CONCLUSIONS: The data presented herein support the hypothesis that CD40×TAA bispecific antibodies can engage tumor-derived vesicles containing tumor neoantigens to myeloid cells such as DCs resulting in an improved DC-mediated cross-priming of tumor-specific CD8+ T cells. Thus, this principle may offer therapeutics strategies to enhance tumor-specific T-cell immunity and associated clinical benefit in indications characterized by poor T-cell infiltration or deficiencies in T-cell priming.


Asunto(s)
Anticuerpos Biespecíficos , Reactividad Cruzada , Humanos , Ratones , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Linfocitos T CD8-positivos , Molécula de Adhesión Celular Epitelial/metabolismo , Células Dendríticas , Antígenos CD40/metabolismo , Antígenos de Neoplasias
5.
Cancer Med ; 11(15): 3023-3032, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35297213

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) patients have limited effect from T-cell-based therapies, such as PD-1 and CTLA-4 blockade. However, recent data indicate that AML patients with TP53 mutation have higher immune infiltration and other immunomodulatory therapies could thus potentially be effective. Here, we performed the transcriptional analysis of distinct T-cell subpopulations from TP53-mutated AML to identify gene expression signatures suggestive of altered functional properties. METHODS: CD8+ cytotoxic T lymphocytes (CTLs), conventional helper T cells (Th), and regulatory T cells (Tregs) were sorted from peripheral blood of AML patients with TP53 mutation (n = 5) and healthy donors (n = 3), using FACS, and the different subpopulations were subsequently subjected to RNA-sequencing. Differentially expressed genes were identified and gene set enrichment analysis (GSEA) was performed to outline altered pathways and exhaustion status. Also, expression levels for a set of genes encoding established and emerging immuno-oncological targets were defined. RESULTS: The results showed altered transcriptional profiles for each of the T-cell subpopulations from TP53-mutated AML as compared to control subjects. IFN-α and IFN-γ signaling were stronger in TP53-mutated AML for both CTLs and Tregs. Furthermore, in TP53-mutated AML as compared to healthy controls, Tregs showed gene expression signatures suggestive of metabolic adaptation to their environment, whereas CTLs exhibited features of exhaustion/dysfunction with a stronger expression of TIM3 as well as enrichment of a gene set related to exhaustion. CONCLUSIONS: The results provide insights on mechanisms underlying the inadequate immune response to leukemic cells in TP53-mutated AML and open up for further exploration toward novel treatment regimens for these patients.


Asunto(s)
Leucemia Mieloide Aguda , Linfocitos T Reguladores , Linfocitos T CD8-positivos , Humanos , Leucemia Mieloide Aguda/metabolismo , Mutación , Linfocitos T Citotóxicos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Expert Opin Biol Ther ; 21(12): 1635-1646, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34043482

RESUMEN

Introduction: CD40 signaling activates dendritic cells leading to improved T cell priming against tumor antigens. CD40 agonism expands the tumor-specific T cell repertoire and has the potential to increase the fraction of patients that respond to established immunotherapies.Areas covered: This article reviews current as well as emerging CD40 agonist therapies with a focus on antibody-based therapies, including next generation bispecific CD40 agonists. The scientific rationale for different design criteria, binding epitopes, and formats are discussed.Expert opinion: The ability of CD40 agonists to activate dendritic cells and enhance antigen cross-presentation to CD8+ T cells provides an opportunity to elevate response rates of cancer immunotherapies. While there are many challenges left to address, including optimal dose regimen, CD40 agonist profile, combination partners and indications, we are confident that CD40 agonists will play an important role in the challenging task of reprogramming the immune system to fight cancer.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Anticuerpos Monoclonales , Antígenos CD40 , Células Dendríticas , Humanos , Inmunoterapia , Neoplasias/terapia
7.
J Immunother Cancer ; 7(1): 103, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975201

RESUMEN

BACKGROUND: The CTLA-4 blocking antibody ipilimumab has demonstrated substantial and durable effects in patients with melanoma. While CTLA-4 therapy, both as monotherapy and in combination with PD-1 targeting therapies, has great potential in many indications, the toxicities of the current treatment regimens may limit their use. Thus, there is a medical need for new CTLA-4 targeting therapies with improved benefit-risk profile. METHODS: ATOR-1015 is a human CTLA-4 x OX40 targeting IgG1 bispecific antibody generated by linking an optimized version of the Ig-like V-type domain of human CD86, a natural CTLA-4 ligand, to an agonistic OX40 antibody. In vitro evaluation of T-cell activation and T regulatory cell (Treg) depletion was performed using purified cells from healthy human donors or cell lines. In vivo anti-tumor responses were studied using human OX40 transgenic (knock-in) mice with established syngeneic tumors. Tumors and spleens from treated mice were analyzed for CD8+ T cell and Treg frequencies, T-cell activation markers and tumor localization using flow cytometry. RESULTS: ATOR-1015 induces T-cell activation and Treg depletion in vitro. Treatment with ATOR-1015 reduces tumor growth and improves survival in several syngeneic tumor models, including bladder, colon and pancreas cancer models. It is further demonstrated that ATOR-1015 induces tumor-specific and long-term immunological memory and enhances the response to PD-1 inhibition. Moreover, ATOR-1015 localizes to the tumor area where it reduces the frequency of Tregs and increases the number and activation of CD8+ T cells. CONCLUSIONS: By targeting CTLA-4 and OX40 simultaneously, ATOR-1015 is directed to the tumor area where it induces enhanced immune activation, and thus has the potential to be a next generation CTLA-4 targeting therapy with improved clinical efficacy and reduced toxicity. ATOR-1015 is also expected to act synergistically with anti-PD-1/PD-L1 therapy. The pre-clinical data support clinical development of ATOR-1015, and a first-in-human trial has started (NCT03782467).


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antígeno CTLA-4/antagonistas & inhibidores , Receptores OX40/agonistas , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Anticuerpos Biespecíficos/uso terapéutico , Células CHO , Antígeno CTLA-4/inmunología , Línea Celular Tumoral/trasplante , Cricetulus , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Cultivo Primario de Células , Prueba de Estudio Conceptual , Receptores OX40/genética , Receptores OX40/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología
8.
Eur J Immunol ; 46(6): 1371-82, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27062602

RESUMEN

IL-18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4(+) T-cell function remains unclear. Here we show that murine intestinal CD4(+) T cells express high levels of IL-18Rα and provide evidence that IL-18Rα expression is induced on these cells subsequent to their entry into the intestinal mucosa. Using the CD45RB(hi) T-cell transfer colitis model, we show that IL-18Rα is expressed on IFN-γ(+) , IL-17(+) , and IL-17(+) IFN-γ(+) effector CD4(+) T cells in the inflamed colonic lamina propria (cLP) and mesenteric lymph node (MLN) and is required for the optimal generation and/or maintenance of IFN-γ-producing cells in the cLP. In the steady state and during colitis, TCR-independent cytokine-induced IFN-γ and IL-17 production by intestinal CD4(+) T cells was largely IL-18Rα-dependent. Despite these findings however, IL-18Rα-deficient CD4(+) T cells induced comparable intestinal pathology to WT CD4(+) T cells. These findings suggest that IL-18-dependent cytokine induced activation of CD4(+) T cells is not critical for the development of T-cell-mediated colitis.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Colitis/etiología , Colitis/metabolismo , Inmunidad Innata , Subunidad alfa del Receptor de Interleucina-18/deficiencia , Antígenos Comunes de Leucocito/metabolismo , Traslado Adoptivo , Animales , Colitis/patología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Inmunofenotipificación , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Ratones , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
9.
J Immunol ; 195(6): 2888-99, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26259586

RESUMEN

Intestinal homeostasis and induction of systemic tolerance to fed Ags (i.e., oral tolerance) rely on the steady-state migration of small intestinal lamina propria dendritic cells (DCs) into draining mesenteric lymph nodes (MLN). The majority of these migratory DCs express the α integrin chain CD103, and in this study we demonstrate that the steady-state mobilization of CD103(+) DCs into the MLN is in part governed by the IL-1R family/TLR signaling adaptor molecule MyD88. Similar to mice with complete MyD88 deficiency, specific deletion of MyD88 in DCs resulted in a 50-60% reduction in short-term accumulation of both CD103(+)CD11b(+) and CD103(+)CD11b(-) DCs in the MLN. DC migration was independent of caspase-1, which is responsible for the inflammasome-dependent proteolytic activation of IL-1 cytokine family members, and was not affected by treatment with broad-spectrum antibiotics. Consistent with the latter finding, the proportion and phenotypic composition of DCs were similar in mesenteric lymph from germ-free and conventionally housed mice. Although TNF-α was required for CD103(+) DC migration to the MLN after oral administration of the TLR7 agonist R848, it was not required for the steady-state migration of these cells. Similarly, TLR signaling through the adaptor molecule Toll/IL-1R domain-containing adapter inducing IFN-ß and downstream production of type I IFN were not required for steady-state CD103(+) DC migration. Taken together, our results demonstrate that MyD88 signaling in DCs, independently of the microbiota and TNF-α, is required for optimal steady-state migration of small intestinal lamina propria CD103(+) DCs into the MLN.


Asunto(s)
Antígenos CD/metabolismo , Células Dendríticas/inmunología , Cadenas alfa de Integrinas/metabolismo , Mucosa Intestinal/inmunología , Ganglios Linfáticos/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Antibacterianos/farmacología , Antígenos CD/biosíntesis , Antígeno CD11b/metabolismo , Caspasa 1/metabolismo , Movimiento Celular/inmunología , Imidazoles/farmacología , Cadenas alfa de Integrinas/biosíntesis , Interferón beta/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Ganglios Linfáticos/citología , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota , Factor 88 de Diferenciación Mieloide/genética , Receptores de Interleucina-1/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/inmunología , Factor de Necrosis Tumoral alfa
10.
Immunity ; 38(5): 958-69, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23664832

RESUMEN

CD103(+)CD11b(+) dendritic cells (DCs) represent the major migratory DC population within the small intestinal lamina propria (SI-LP), but their in vivo function remains unclear. Here we demonstrate that intestinal CD103(+)CD11b(+) DC survival was dependent on interferon regulatory factor 4 (IRF4). Mice with a DC deletion in Irf4 displayed reduced numbers of intestinal interleukin 17 (IL-17)-secreting helper T 17 (Th17) cells and failed to support Th17 cell differentiation in draining mesenteric lymph nodes (MLN) following immunization. The latter was associated with a selective reduction in CD103(+)CD11b(+) MLN DCs and DC derived IL-6. Immunized Il6(-/-) mice failed to support Th17 cell differentiation in MLN in vivo and CD103(+)CD11b(+) MLN DCs supported IL-6-dependent Th17 cell differentiation in vitro. Together, our results suggest a central role for IRF4-dependent, IL-6 producing CD103(+)CD11b(+) DCs in intestinal Th17 cell differentiation.


Asunto(s)
Células Dendríticas/metabolismo , Factores Reguladores del Interferón/metabolismo , Interleucina-17/metabolismo , Células Th17/inmunología , Células Th17/fisiología , Animales , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Cadenas alfa de Integrinas/metabolismo , Factores Reguladores del Interferón/genética , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Ganglios Linfáticos/citología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...