Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 13: 284-304, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30875610

RESUMEN

The circadian clock and the hypoxia-signaling pathway are regulated by an integrated interplay of positive and negative feedback limbs that incorporate energy homeostasis and carcinogenesis. We show that the negative circadian regulator CRY1 is also a negative regulator of hypoxia-inducible factor (HIF). Mechanistically, CRY1 interacts with the basic-helix-loop-helix domain of HIF-1α via its tail region. Subsequently, CRY1 reduces HIF-1α half-life and binding of HIFs to target gene promoters. This appeared to be CRY1 specific because genetic disruption of CRY1, but not CRY2, affected the hypoxia response. Furthermore, CRY1 deficiency could induce cellular HIF levels, proliferation, and migration, which could be reversed by CRISPR/Cas9- or short hairpin RNA-mediated HIF knockout. Altogether, our study provides a mechanistic explanation for genetic association studies linking a disruption of the circadian clock with hypoxia-associated processes such as carcinogenesis.

2.
J Immunother ; 31(7): 656-64, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18600179

RESUMEN

Dendritic cells (DCs) are currently considered as promising tools for vaccination against tumors and also autoimmune responses. A major point of concern has been the use of fetal calf serum (FCS) as a source of heterologous antigen in DC cultures. FCS peptides can be presented by the DCs and cause T-cell responses in the recipient. We investigated the role of FCS in an autoimmune model where DC injections can prevent peptide-specifically from experimental autoimmune encephalomyelitis (EAE). We show that murine bone marrow-derived DCs generated in FCS-containing or serum-free media resulting in a similar phenotype, maturation potential, and functions. Peptide-specific protection could be achieved similarly with FCS-DC or serum-free DCs. Although FCS-DC induced strong CD4 T cell proliferation and cytokine production against FCS, these T cells lack antigenic recall during EAE. Even if FCS was reinjected, the effect on EAE resulted only in a 3-day delay of disease onset. Together, our data show that presentation of bystander antigens by peptide-specific DC vaccinations may have little influence on T-cell responses in vivo if the bystander antigen cannot be recalled by specific T cells.


Asunto(s)
Presentación de Antígeno/inmunología , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/prevención & control , Activación de Linfocitos/inmunología , Vacunación , Animales , Proteínas Sanguíneas/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Bovinos , Proliferación Celular/efectos de los fármacos , Medio de Cultivo Libre de Suero , Encefalomielitis Autoinmune Experimental/inmunología , Ratones , Péptidos/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T/efectos de los fármacos , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología
3.
J Immunol ; 180(3): 1405-13, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18209035

RESUMEN

The priming of CD4+ effector T cells (T(eff)) in vivo is induced by mature dendritic cells (DC) and controlled by CD4+CD25+Foxp3+ regulatory T cells (T(reg)). It remains unclear,however, how T(eff) priming vs T(reg) suppression are regulated during Ag presentation by DC in secondary lymphoid organs at the simultaneous presence of T(eff) and T(reg). In this study, we used an peptide-specific DO11.10 TCR-transgenic adoptive transfer model to follow the T(eff) priming kinetics and the mechanisms of suppression by T(reg). T(reg) activation was slower as compared with T(eff) and could not influence the early T(eff) expansion but limited the T(eff) response leading to lower T(eff) numbers in the memory phase. DC-T(reg) cell contacts remained unaltered during suppression by T(reg) and led to a down-regulation of the costimulatory molecules CD80, CD86, PD-L1, and PD-L2 but not MHC II, CD40, ICOS-L, or CD70 from the mature DC surface. This effect was observed only after DC maturation with TNF or LPS but not after additional CD40 licensing. Together, our data indicate that T(reg) suppression against nonself Ags in vivo occurs delayed due to the slower T(reg) response, is mediated to a large extent through DC modulation, but is controlled by the type of DC maturation.


Asunto(s)
Presentación de Antígeno , Antígenos CD40/inmunología , Células Dendríticas/inmunología , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Antígeno B7-H1 , Antígenos CD40/metabolismo , Regulación hacia Abajo , Terapia de Inmunosupresión , Ligandos , Activación de Linfocitos , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Péptidos/metabolismo , Proteína 2 Ligando de Muerte Celular Programada 1 , Bazo/inmunología
4.
Cancer Immunol Immunother ; 57(4): 467-77, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17768622

RESUMEN

BACKGROUND: Inefficient migration of dendritic cells (DC) to regional lymph nodes (LN) upon intracutaneous injection is a major obstacle for effective DC vaccination. Intravenous vaccination is unfavorable, because DC cannot migrate directly from the blood into LN. METHODS: To enable human monocyte-derived (mo)DC to enter LN directly from the blood, we manipulated them by RNA electroporation to express a human chimeric E/L-selectin (CD62E/CD62L) protein, which binds to peripheral node addressin expressed on high endothelial venules. RESULTS: Transfection efficiency exceeded 95%, and high E/L-selectin surface expression was detected for >48 h. E/L-selectin RNA-transfected DC displayed an identical mature DC phenotype as mock-transfected DC. Furthermore, E/L-selectin-transfected DC maintained their normal CCR7-mediated migration capacity, and their ability to prime and expand functional cytotoxic T cells recognizing MelanA. Most importantly, E/L-selectin-RNA-transfected DC gained the capability to attach to and roll on sialyl-Lewis(X) in vitro. OUTLOOK: The presented strategy can be readily translated into the clinic, as it involves no stable genetic manipulation or viral transformation, and allows targeting of a large number of LN.


Asunto(s)
Movimiento Celular/fisiología , Células Dendríticas/metabolismo , Selectina E/metabolismo , Selectina L/metabolismo , ARN , Quimera , Electroporación , Citometría de Flujo , Humanos , Ganglios Linfáticos/citología , Ganglios Linfáticos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Vacunación/métodos
5.
Eur J Immunol ; 35(12): 3533-44, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16331707

RESUMEN

Tolerogenic activity of myeloid dendritic cells (DC) has so far been attributed mostly to immature or semi-mature differentiation stages but never to their precursor cells. Although myeloid suppressor cells (MSC) have been isolated ex vivo, their developmental relationship to DC and their precise phenotype remained elusive. Here, we describe the generation of MSC as myeloid DC precursors with potent suppressive activity on allogeneic and OVA-specific CD4+ and CD8+ T cell responses in vitro. These MSC appear transiently in DC cultures of bone marrow (BM) cells after 8-10 days under low GM-CSF conditions or after 3-4 days under high GM-CSF conditions. They represent CD11c- myeloid precursor cells with ring-shaped nuclei and are Gr-1low (i.e. Ly-6C+, Ly-6Glow), CD11b+, CD31+, ER-MP58+, asialoGM1+ and F4/80+. Sorted MSC develop into CD11c+ DC within 6 days. Their suppressor activity partially depends on IFN-gamma stimulation. Suppression is mediated through mechanisms requiring cell contact and nitric oxide but is independent of TNF, CD1d and TGF-beta. Together, our data describe the generation of MSC with distinct suppressor mechanisms in vitro preceding their development into immature DC.


Asunto(s)
Comunicación Celular/inmunología , Células Dendríticas/inmunología , Tolerancia Inmunológica , Células Progenitoras Mieloides/inmunología , Óxido Nítrico/biosíntesis , Linfocitos T/inmunología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Adhesión Celular/inmunología , Células Cultivadas , Células Dendríticas/citología , Inmunofenotipificación , Prueba de Cultivo Mixto de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células Progenitoras Mieloides/citología , Células Progenitoras Mieloides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...