Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Sci Rep ; 13(1): 5796, 2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37032349

RESUMEN

We study ultrafast population dynamics in the topological surface state of Sb[Formula: see text]Te[Formula: see text] in two-dimensional momentum space with time- and angle-resolved two-photon photoemission spectroscopy. Linearly polarized mid-infrared pump pulses are used to permit a direct optical excitation across the Dirac point. We show that this resonant excitation is strongly enhanced within the Dirac cone along three of the six [Formula: see text]-[Formula: see text] directions and results in a macroscopic photocurrent when the plane of incidence is aligned along a [Formula: see text]-[Formula: see text] direction. Our experimental approach makes it possible to disentangle the decay of transiently excited population and photocurent by elastic and inelastic electron scattering within the full Dirac cone in unprecedented detail. This is utilized to show that doping of Sb[Formula: see text]Te[Formula: see text] by vanadium atoms strongly enhances inelastic electron scattering to lower energies, but only scarcely affects elastic scattering around the Dirac cone.

2.
Nature ; 616(7958): 696-701, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046087

RESUMEN

Strong light fields have created opportunities to tailor novel functionalities of solids1-5. Floquet-Bloch states can form under periodic driving of electrons and enable exotic quantum phases6-15. On subcycle timescales, lightwaves can simultaneously drive intraband currents16-29 and interband transitions18,19,30,31, which enable high-harmonic generation16,18,19,21,22,25,28-30 and pave the way towards ultrafast electronics. Yet, the interplay of intraband and interband excitations and their relation to Floquet physics have been key open questions as dynamical aspects of Floquet states have remained elusive. Here we provide this link by visualizing the ultrafast build-up of Floquet-Bloch bands with time-resolved and angle-resolved photoemission spectroscopy. We drive surface states on a topological insulator32,33 with mid-infrared fields-strong enough for high-harmonic generation-and directly monitor the transient band structure with subcycle time resolution. Starting with strong intraband currents, we observe how Floquet sidebands emerge within a single optical cycle; intraband acceleration simultaneously proceeds in multiple sidebands until high-energy electrons scatter into bulk states and dissipation destroys the Floquet bands. Quantum non-equilibrium calculations explain the simultaneous occurrence of Floquet states with intraband and interband dynamics. Our joint experiment and theory study provides a direct time-domain view of Floquet physics and explores the fundamental frontiers of ultrafast band-structure engineering.

3.
J Phys Condens Matter ; 33(34)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34111848

RESUMEN

Atomic-scale chemical modification of surface-adsorbed ethyl groups on Si(001) was induced and studied by means of scanning tunneling microscopy. Tunneling at sample bias >+1.5 V leads to tip-induced C-H cleavage of aß-hydrogen of the covalently bound ethyl configuration. The reaction is characterized by the formation of an additional Si-H and a Si-C bond. The reaction probability shows a linear dependence on the tunneling current at 300 K; the reaction is largely suppressed at 50 K. The observed tip-induced surface reaction at room temperature is thus attributed to a one-electron excitation in combination with thermal activation.

4.
Nature ; 593(7859): 385-390, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34012087

RESUMEN

When intense lightwaves accelerate electrons through a solid, the emerging high-order harmonic (HH) radiation offers key insights into the material1-11. Sub-optical-cycle dynamics-such as dynamical Bloch oscillations2-5, quasiparticle collisions6,12, valley pseudospin switching13 and heating of Dirac gases10-leave fingerprints in the HH spectra of conventional solids. Topologically non-trivial matter14,15 with invariants that are robust against imperfections has been predicted to support unconventional HH generation16-20. Here we experimentally demonstrate HH generation in a three-dimensional topological insulator-bismuth telluride. The frequency of the terahertz driving field sharply discriminates between HH generation from the bulk and from the topological surface, where the unique combination of long scattering times owing to spin-momentum locking17 and the quasi-relativistic dispersion enables unusually efficient HH generation. Intriguingly, all observed orders can be continuously shifted to arbitrary non-integer multiples of the driving frequency by varying the carrier-envelope phase of the driving field-in line with quantum theory. The anomalous Berry curvature warranted by the non-trivial topology enforces meandering ballistic trajectories of the Dirac fermions, causing a hallmark polarization pattern of the HH emission. Our study provides a platform to explore topology and relativistic quantum physics in strong-field control, and could lead to non-dissipative topological electronics at infrared frequencies.

5.
Science ; 371(6533): 1056-1059, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33602865

RESUMEN

Frontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. We measured the full momentum-space distribution of transiently excited electrons, connecting their excited-state dynamics to real-space excitation pathways. Because in molecules this distribution is closely linked to orbital shapes, our experiment may, in the future, offer the possibility of observing ultrafast electron motion in time and space.

6.
J Chem Phys ; 150(22): 224703, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31202240

RESUMEN

The reaction dynamics of methanol and water on Si(001) were investigated by means of molecular beam techniques. The initial sticking probability s0 was determined as a function of the kinetic energy of the incoming molecules, Ekin, and surface temperature, Ts. For both, methanol and water, a nonactivated reactional channel was observed; the dynamics were found to be determined by the reaction into the datively bonded intermediate state. A low conversion barrier was deduced for the conversion from this intermediate into the final state. It is attributed to the reaction mechanism, which proceeds via proton transfer from the OH-group of the datively bonded molecules to a Si surface atom. Despite this low conversion barrier, adsorption into the intermediate and further reaction via proton transfer were found to be largely decoupled.

7.
J Phys Condens Matter ; 31(3): 034001, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30523882

RESUMEN

Adsorption of ethynyl-cyclopropyl-cyclooctyne (ECCO), an alkyne-functionalized cyclooctyne, on Si(0 0 1) was studied by means of x-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Together, XPS and STM results clearly indicate chemoselective adsorption of ECCO on Si(0 0 1) via a [2+2] cycloaddition of the strained triple bond of cyclooctyne without reaction of the ethynyl group. The results are compared to the adsorption of acetylene on Si(0 0 1): C2H2 adsorbs on Si(0 0 1) via a precursor-mediated reaction channel as it was shown by means of temperature dependent measurements of the sticking probability as well as by means of STM experiments at variable temperature. On the other hand, cyclooctyne adsorbs on Si(0 0 1) via a direct reaction channel. This qualitative difference in the reaction pathways of the two functionalities leads to the observed chemoselective adsorption of ECCO via the strained triple bond of cyclooctyne. As the ethynyl group stays intact, monolayers of ECCO on Si(0 0 1) form a well defined interface between the silicon substrate and further organic molecular layers which can be attached to the ethynyl functionality.

8.
J Phys Condens Matter ; 30(48): 484001, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30406767

RESUMEN

Optical second-harmonic generation is demonstrated to be a sensitive probe of the buried interface between the lattice-matched semiconductors gallium phosphide and silicon with (0 0 1) orientation. Ex situ rotational anisotropy measurements on GaP/Si heterostructures show a strong isotropic component of the second-harmonic response not present for pure Si(0 0 1) or GaP(0 0 1). The strength of the overlaying anisotropic response directly correlates with the quality of the interface as determined by atomically resolved scanning transmission electron microscopy. Systematic comparison of samples fabricated under different growth conditions in metal-organic vapor phase epitaxy reveals that the anisotropy for different polarization combinations can be used as a selective fingerprint for the occurrence of anti-phase domains and twins. This all-optical technique can be applied as an in situ and non-invasive monitor even during growth.

9.
J Phys Condens Matter ; 30(49): 494001, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30451155

RESUMEN

The unoccupied electronic structure of stacked layers of copper(II)phthalocyanine (CuPc) and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) on Ag(1 1 1) has been investigated by means of two-photon photoemission (2PPE). We find a rich electronic structure comprising at least five unoccupied electronic states which we identify based on their energetic position and their dispersion in momentum space. More specifically, we observe the first and the second image-potential states of the modified Ag(1 1 1) surface, as well as the metal-organic interface state (IS) inherent to the PTCDA/Ag(1 1 1) interface. Moreover, two additional molecular features are observed for the CuPc/PTCDA/Ag(1 1 1) system which we attribute to an unoccupied molecular orbital (LUMO + 2) of CuPc. The 2PPE intensity of the IS exhibits a pronounced dependence on the pump photon energy, which closely follows the optical absorption of the outer molecular layer. This strongly points to charge transfer from the optically excited molecules to the interface state.

10.
Nature ; 562(7727): 396-400, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30258232

RESUMEN

Harnessing the carrier wave of light as an alternating-current bias may enable electronics at optical clock rates1. Lightwave-driven currents have been assumed to be essential for high-harmonic generation in solids2-6, charge transport in nanostructures7,8, attosecond-streaking experiments9-16 and atomic-resolution ultrafast microscopy17,18. However, in conventional semiconductors and dielectrics, the finite effective mass and ultrafast scattering of electrons limit their ballistic excursion and velocity. The Dirac-like, quasi-relativistic band structure of topological insulators19-29 may allow these constraints to be lifted and may thus open a new era of lightwave electronics. To understand the associated, complex motion of electrons, comprehensive experimental access to carrier-wave-driven currents is crucial. Here we report angle-resolved photoemission spectroscopy with subcycle time resolution that enables us to observe directly how the carrier wave of a terahertz light pulse accelerates Dirac fermions in the band structure of the topological surface state of Bi2Te3. While terahertz streaking of photoemitted electrons traces the electromagnetic field at the surface, the acceleration of Dirac states leads to a strong redistribution of electrons in momentum space. The inertia-free surface currents are protected by spin-momentum locking and reach peak densities as large as two amps per centimetre, with ballistic mean free paths of several hundreds of nanometres, opening up a realistic parameter space for all-coherent lightwave-driven electronic devices. Furthermore, our subcycle-resolution analysis of the band structure may greatly improve our understanding of electron dynamics and strong-field interaction in solids.

11.
Phys Rev Lett ; 116(25): 256801, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27391738

RESUMEN

Electrons in image-potential states on the surface of bulk helium represent a unique model system of a two-dimensional electron gas. Here, we investigate their properties in the extreme case of reduced film thickness: a monolayer of helium physisorbed on a single-crystalline (111)-oriented Cu surface. For this purpose we have utilized a customized setup for time-resolved two-photon photoemission at very low temperatures under ultrahigh vacuum conditions. We demonstrate that the highly polarizable metal substrate increases the binding energy of the first (n=1) image-potential state by more than 2 orders of magnitude as compared to the surface of liquid helium. An electron in this state is still strongly decoupled from the metal surface due to the large negative electron affinity of helium and we find that even 1 monolayer of helium increases its lifetime by 1 order of magnitude compared to the bare Cu(111) surface.

12.
Phys Rev Lett ; 116(7): 076801, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26943549

RESUMEN

We combine tunable midinfrared (mid-IR) pump pulses with time- and angle-resolved two-photon photoemission to study ultrafast photoexcitation of the topological surface state (TSS) of Sb_{2}Te_{3}. It is revealed that mid-IR pulses permit a direct excitation from the occupied to the unoccupied part of the TSS across the Dirac point. The novel optical coupling induces asymmetric transient populations of the TSS at ±k_{∥}, which reflects a macroscopic photoexcited electric surface current. By observing the decay of the asymmetric population, we directly investigate the dynamics of the long-lived photocurrent in the time domain. Our discovery promises important advantages of photoexcitation by mid-IR pulses for spintronic applications.

13.
J Chem Phys ; 139(12): 124701, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-24089789

RESUMEN

We present an investigation of the electronic structure and excited state dynamics of optically excited 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) thin films adsorbed on Ag(111) using two-photon photoemission spectroscopy (2PPE). 2PPE allows us to study both occupied and unoccupied electronic states, and we are able to identify signals from the highest occupied and the two lowest unoccupied electronic states of the PTCDA thin film in the 2PPE spectra. The energies for occupied states are identical to values from ultraviolet photoelectron spectroscopy. Compared to results from inverse photoelectron spectroscopy (IPES), the 2PPE signals from the two lowest unoccupied electronic states, LUMO and LUMO+1, are found at 0.8 eV and 1.0 eV lower energies, respectively. We attribute this deviation to the different final states probed in 2PPE and IPES and the attractive interaction of the photoexcited electron and the remaining hole. Furthermore, we present a time-resolved investigation of the excited state dynamics of the PTCDA film in the femtosecond time regime. We observe a significantly shorter inelastic excited state lifetime compared to findings from time-resolved photoluminescence spectroscopy of PTCDA single crystals which could originate from excitation quenching by the metal substrate.

14.
J Chem Phys ; 136(14): 144703, 2012 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-22502539

RESUMEN

The dynamics of ethylene adsorption on the Si(001) surface was investigated by means of molecular beam techniques. A constant decrease of initial sticking probability s(0) was observed with increasing kinetic energy indicating a non-activated adsorption channel. With increasing surface temperature, s(0) decreases as well, pointing towards adsorption via a precursor state. Quantitative evaluation of the temperature dependence of s(0) via the Kisliuk model was possible for surface temperatures above 250 K; below that value, the temperature dependence is dominated by the adsorption dynamics into the precursor state. Maximum surface coverage was found to be reduced with increasing surface temperature, which is discussed on the basis of a long lifetime of the precursor state at low temperatures.

15.
Phys Rev Lett ; 108(5): 056801, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22400950

RESUMEN

The unoccupied electronic states of epitaxially grown graphene on Ru(0001) have been explored by time- and angle-resolved two-photon photoemission. We identify a Ru derived resonance and a Ru/graphene interface state at 0.91 and 2.58 eV above the Fermi level, as well as three image-potential derived states close to the vacuum level. The most strongly bound, short-lived, and least dispersing image-potential state is suggested to have some quantum-well character with a large amplitude below the graphene hills. The two other image-potential states are attributed to a series of slightly decoupled states. Their lifetimes and dispersions are indicative of electrons moving almost freely above the valley areas of the moiré superstructure of graphene.

16.
Phys Rev Lett ; 107(23): 236801, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22182113

RESUMEN

Image-potential states have been studied by two-photon photoemission for the surface of Al(100) where the whole series is energetically degenerate with free-electron-like bulk states. In contrast with expectations, the series of resonances is not smeared out to one broad structure as a result of a strong coupling to the bulk continuum. Instead, the first resonance (n=1) is found to be suppressed, and the resonances with quantum numbers n=2,3,4,5 are resolved as individual peaks in the time-resolved spectra. Both effects are suggested to be a consequence of resonance trapping.

17.
Phys Rev Lett ; 107(3): 033903, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21838359

RESUMEN

We investigate macroscopic interference effects in high-order harmonic generation using a Ti:sapphire laser operating at a 100 kHz repetition rate. The structure and behavior of spectral and spatial interference fringes are explained and analytically described by transient phase matching of the long electron trajectory contribution. Time-frequency mapping due to the temporal chirp of the harmonic emission allows us to observe Maker fringes directly in the spectral domain.

18.
Phys Rev Lett ; 101(14): 146801, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18851554

RESUMEN

The lifetimes of electrons at the interface between 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) and Ag(111) have been studied by means of time- and angle-resolved two-photon photoemission. We observe a dispersing unoccupied state 0.6 eV above the Fermi level with an effective electron mass of 0.39m{e} at the Gamma[over ] point. The short lifetime of 54 fs is indicative of a large penetration of the wave function into the metal. Supported by model calculations this interface state is interpreted as predominantly arising from an upshift of the occupied Shockley surface state of the clean metal due to the interaction with the PTCDA overlayer.

19.
Science ; 318(5854): 1287-91, 2007 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-18033880

RESUMEN

Studies of current dynamics in solids have been hindered by insufficiently brief trigger signals and electronic detection speeds. By combining a coherent control scheme with photoelectron spectroscopy, we generated and detected lateral electron currents at a metal surface on a femtosecond time scale with a contact-free experimental setup. We used coherent optical excitation at the light frequencies omega(a) and omega(a)/2 to induce the current, whose direction was controlled by the relative phase between the phase-locked laser excitation pulses. Time- and angle-resolved photoelectron spectroscopy afforded a direct image of the momentum distribution of the excited electrons as a function of time. For the first (n = 1) image-potential state of Cu(100), we found a decay time of 10 femtoseconds, attributable to electron scattering with steps and surface defects.

20.
Chem Rev ; 106(10): 4261-80, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17031986
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...