Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38879872

RESUMEN

Antiviral therapy is constantly challenged by the emergence of resistant pathogens. At the same time, experimental approaches to understand and predict resistance are limited by long periods required for evolutionary processes. Here, we present a herpes simplex virus 1 mutant with impaired proofreading capacity and consequently elevated mutation rates. Comparing this hypermutator to parental wild type virus, we study the evolution of antiviral drug resistance in vitro. We model resistance development and elucidate underlying genetic changes against three antiviral substances. Our analyzes reveal no principle difference in the evolutionary behavior of both viruses, adaptive processes are overall similar, however significantly accelerated for the hypermutator. We conclude that hypermutator viruses are useful for modeling adaptation to antiviral therapy. They offer the benefit of expedited adaptation without introducing apparent bias and can therefore serve as an accelerator to predict natural evolution.


Asunto(s)
Antivirales , Farmacorresistencia Viral , Evolución Molecular , Herpesvirus Humano 1 , Farmacorresistencia Viral/genética , Antivirales/farmacología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/efectos de los fármacos , Mutación , Tasa de Mutación , Evolución Biológica , Humanos
2.
J Evol Biol ; 36(11): 1551-1567, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37975507

RESUMEN

Social interactions among viruses occur whenever multiple viral genomes infect the same cells, hosts, or populations of hosts. Viral social interactions range from cooperation to conflict, occur throughout the viral world, and affect every stage of the viral lifecycle. The ubiquity of these social interactions means that they can determine the population dynamics, evolutionary trajectory, and clinical progression of viral infections. At the same time, social interactions in viruses raise new questions for evolutionary theory, providing opportunities to test and extend existing frameworks within social evolution. Many opportunities exist at this interface: Insights into the evolution of viral social interactions have immediate implications for our understanding of the fundamental biology and clinical manifestation of viral diseases. However, these opportunities are currently limited because evolutionary biologists only rarely study social evolution in viruses. Here, we bridge this gap by (1) summarizing the ways in which viruses can interact socially, including consequences for social evolution and evolvability; (2) outlining some open questions raised by viruses that could challenge concepts within social evolution theory; and (3) providing some illustrative examples, data sources, and conceptual questions, for studying the natural history of social viruses.


Asunto(s)
Virosis , Virus , Humanos , Evolución Biológica , Virus/genética , Genoma Viral , Evolución Molecular
3.
J Virol ; 97(1): e0135922, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36598203

RESUMEN

Herpes simplex virus 1 (HSV-1) encodes a family B DNA polymerase (Pol) capable of exonucleolytic proofreading whose functions have been extensively studied in the past. Early studies on the in vitro activity of purified Pol protein found that the enzymatic functions of the holoenzyme are largely separate. Consequently, exonuclease activity can be reduced or abolished by certain point mutations within catalytically important regions, with no or only minor effects on polymerase activity. Despite unimpaired polymerase activity, the recovery of HSV-1 mutants with a catalytically inactive exonuclease has been so far unsuccessful. Hence, mutations such as D368A, which abolish exonuclease activity, are believed to be lethal. Here, we show that HSV-1 can be recovered in the absence of Pol intrinsic exonuclease activity and demonstrate that a lack of proofreading causes the rapid accumulation of likely detrimental mutations. Although mutations that abolish exonuclease activity do not appear to be lethal, the lack of proofreading yields viruses with a suicidal phenotype that cease to replicate within few passages following reconstitution. Hence, we conclude that high replication fidelity conferred by proofreading is essential to maintain HSV-1 genome integrity and that a lack of exonuclease activity produces an initially viable but rapidly suicidal phenotype. However, stably replicating viruses with reduced exonuclease activity and therefore elevated mutation rates can be generated by mutating a catalytically less important site located within a conserved exonuclease domain. IMPORTANCE Recovery of fully exonuclease-deficient herpes simplex virus 1 (HSV-1) DNA polymerase mutants has been so far unsuccessful. However, exonuclease activity is not known to be directly essential for virus replication, and the lethal phenotype of certain HSV-1 polymerase mutants is thus attributed to factors other than exonuclease activity. Here, we showed that the recovery of a variety of exonuclease-deficient HSV-1 polymerase mutants is possible and that these mutants are initially replication competent. We, however, observed a progressive loss of mutant viability upon cell culture passaging, which coincided with the rapid accumulation of mutations in exonuclease-deficient viruses. We thus concluded that a lack of DNA proofreading in exonuclease-deficient viruses causes an initially viable but rapidly suicidal hypermutator phenotype and, consequently, the extinction of mutant viruses within few generations following recovery. This would make the absence of exonuclease activity the primary reason for the long-reported difficulties in culturing exonuclease-deficient HSV-1 mutants.


Asunto(s)
Herpesvirus Humano 1 , Replicación del ADN/genética , Exonucleasas/genética , Exonucleasas/metabolismo , Herpesvirus Humano 1/enzimología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Mutación , Fenotipo
4.
Virus Evol ; 8(2): veac099, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405341

RESUMEN

Evolution relies on the availability of genetic diversity for fitness-based selection. However, most deoxyribonucleic acid (DNA) viruses employ DNA polymerases (Pol) capable of exonucleolytic proofreading to limit mutation rates during DNA replication. The relative genetic stability produced by high-fidelity genome replication can make studying DNA virus adaptation and evolution an intensive endeavor, especially in slowly replicating viruses. Here, we present a proofreading-impaired Pol mutant (Y547S) of Marek's disease virus that exhibits a hypermutator phenotype while maintaining unimpaired growth in vitro and wild-type (WT)-like pathogenicity in vivo. At the same time, mutation frequencies observed in Y547S virus populations are 2-5-fold higher compared to the parental WT virus. We find that Y547S adapts faster to growth in originally non-permissive cells, evades pressure conferred by antiviral inhibitors more efficiently, and is more easily attenuated by serial passage in cultured cells compared to WT. Our results suggest that hypermutator viruses can serve as a tool to accelerate evolutionary processes and help identify key genetic changes required for adaptation to novel host cells and resistance to antiviral therapy. Similarly, the rapid attenuation achieved through adaptation of hypermutators to growth in cell culture enables identification of genetic changes underlying attenuation and virulence, knowledge that could practically exploited, e.g. in the rational design of vaccines.

5.
Cell Rep ; 36(5): 109493, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34320400

RESUMEN

Safe and effective vaccines are urgently needed to stop the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We construct a series of live attenuated vaccine candidates by large-scale recoding of the SARS-CoV-2 genome and assess their safety and efficacy in Syrian hamsters. Animals were vaccinated with a single dose of the respective recoded virus and challenged 21 days later. Two of the tested viruses do not cause clinical symptoms but are highly immunogenic and induce strong protective immunity. Attenuated viruses replicate efficiently in the upper but not in the lower airways, causing only mild pulmonary histopathology. After challenge, hamsters develop no signs of disease and rapidly clear challenge virus: at no time could infectious virus be recovered from the lungs of infected animals. The ease with which attenuated virus candidates can be produced and administered favors their further development as vaccines to combat the ongoing pandemic.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/inmunología , COVID-19/prevención & control , Sistema Respiratorio/patología , Sistema Respiratorio/virología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Animales , Chlorocebus aethiops , Edición Génica , Genoma Viral , Humanos , Inmunidad , Mesocricetus , Mutación , Pandemias/prevención & control , Vacunas Atenuadas , Células Vero , Replicación Viral
6.
Mol Microbiol ; 115(6): 1244-1261, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33330989

RESUMEN

Bile resistance is essential for enteric pathogens, as exemplified by Vibrio cholerae, the causative agent of cholera. The outer membrane porin OmpU confers bacterial survival and colonization advantages in the presence of host-derived antimicrobial peptides as well as bile. Expression of ompU is controlled by the virulence regulator ToxR. rpoE knockouts are accompanied by suppressor mutations causing ompU downregulation. Therefore, OmpU constitutes an intersection of the ToxR regulon and the σE -pathway in V. cholerae. To understand the mechanism by which the sigma factor σE regulates OmpU synthesis, we performed transcription studies using ompU reporter fusions and immunoblot analysis. Our data revealed an increase in ompU promoter activity in ΔrpoE strains, as well as in a ΔompU background, indicating a negative feedback regulation circuit of ompU expression. This regulation seems necessary, since elevated lethality rates of ΔrpoE strains occur upon ompU overexpression. Manipulation of OmpU's C-terminal portion revealed its relevance for protein stability and potency of σE release. Furthermore, ΔrpoE strains are still capable of elevating OmpU levels under membrane stress conditions triggered by the bile salt sodium deoxycholate. This study provides new details about the impact of σE on ompU regulation, which is critical to the pathogen's intestinal survival.


Asunto(s)
Adhesinas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor sigma/genética , Factores de Transcripción/metabolismo , Vibrio cholerae/genética , Adhesinas Bacterianas/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/genética , Porinas/biosíntesis , Porinas/genética , Regiones Promotoras Genéticas/genética , Vibrio cholerae/metabolismo
7.
Front Microbiol ; 11: 1254, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595626

RESUMEN

In conjugative elements such as integrating conjugative elements (ICEs) or conjugative plasmids (CPs) transcription of DNA transfer genes is a prerequisite for cells to become transfer competent, i.e., capable of delivering plasmid DNA via bacterial conjugation into new host bacteria. In the large family of F-like plasmids belonging to the MobF12A group, transcription of DNA transfer genes is tightly controlled and dependent on the activation of a single promoter, designated PY. Plasmid encoded TraJ and chromosomally encoded ArcA proteins are known activators, whereas the nucleoid associated protein heat-stable nucleoid structuring (H-NS) silences the PY promoter. To better understand the role of these proteins in PY promoter activation, we performed in vitro DNA binding studies using purified H-NS, ArcA, and TraJR 1 (TraJ encoded by the conjugative resistance plasmid R1). All proteins could bind to R1PY DNA with high affinities; however, only ArcA was found to be highly sequence specific. DNase I footprinting studies revealed three H-NS binding sites, confirmed the binding site for ArcA, and suggested that TraJ contacts a dyad symmetry DNA sequence located between -51 and -38 in the R1PY promoter region. Moreover, TraJR 1 and ArcA supplied together changed the H-NS specific protection pattern suggesting that these proteins are able to replace H-NS from R1PY regions proximal to the transcription start site. Our findings were corroborated by PY-lacZ reporter fusions with a series of site specific R1PY promoter mutations. Sequential changes of some critical DNA bases in the TraJ binding site (jbs) from plasmid R1 to plasmid F led to a remarkable specificity switch: The PY promoter became activatable by F encoded TraJ whereas TraJR 1 lost its activation function. The R1PY mutagenesis approach also confirmed the requirement for the host-encoded response-regulator ArcA and indicated that the sequence context, especially in the -35 region is critical for PY regulation and function.

8.
Mol Microbiol ; 114(2): 262-278, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32251547

RESUMEN

Protein-protein interactions (PPIs) are key mechanisms in the maintenance of biological regulatory networks. Herein, we characterize PPIs within ToxR and its co-activator, ToxS, to understand the mechanisms of ToxR transcription factor activation. ToxR is a key transcription activator that is supported by ToxS for virulence gene regulation in Vibrio cholerae. ToxR comprises a cytoplasmic DNA-binding domain that is linked by a transmembrane domain to a periplasmic signal receiver domain containing two cysteine residues. ToxR-ToxR and ToxR-ToxS PPIs were detected using an adenylate-cyclase-based bacterial two-hybrid system approach in Escherichia coli. We found that the ToxR-ToxR PPIs are significantly increased in response to ToxR operators, the co-activator ToxS and bile salts. We suggest that ToxS and bile salts promote the interaction between ToxR molecules that ultimately results in dimerization. Upon binding of operators, ToxR-ToxR PPIs are found at the highest frequency. Moreover, disulfide-bond-dependent interaction in the periplasm results in homodimer formation that is promoted by DNA binding. The formation of these homodimers and the associated transcriptional activity of ToxR were strongly dependent on the oxidoreductases DsbA/DsbC. These findings show that protein and non-protein partners, that either transiently or stably interact with ToxR, fine-tune ToxR PPIs, and its associated transcriptional activity in changing environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Transcripción/metabolismo , Vibrio cholerae/metabolismo , Proteínas Bacterianas/genética , Ácidos y Sales Biliares/metabolismo , Sitios de Unión/genética , Proteínas de Unión al ADN/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Interacciones Huésped-Patógeno/fisiología , Proteínas de la Membrana/genética , Dominios Proteicos/genética , Mapas de Interacción de Proteínas/fisiología , Factores de Transcripción/genética , Vibrio cholerae/patogenicidad , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
9.
Appl Phys A Mater Sci Process ; 107(4): 985-993, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23785220

RESUMEN

This work reports on the investigation of the photosensitive polymer poly(diphenyl bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate) (PPNB), which undergoes the photo-Fries rearrangement upon illumination with UV-light, used as interfacial layers in organic electronic devices. Two cases were investigated: the use of a blend of PPNB with poly-vinylcarbazole (PVK) as an interlayer in para-sexiphenyl (PSP) based organic light emitting diodes (OLEDs) and the use of PPNB as gate dielectric layer in organic field effect transistors (OFETs). The photo-Fries rearrangement reaction causes a change of the polymer chemical structure resulting in a change of its physical and chemical properties. The electroluminescence spectra and emission of the PSP OLEDs are not affected when fabricated with a non-UV-illuminated PPNB:PVK blend. However, the electroluminescence is totally quenched in those OLEDs fabricated with UV-illuminated PPNB:PVK blend. Although the dielectric constant of PPNB increases upon UV-treatment, it is demonstrated that those OFETs built with UV-treated PPNB as gate dielectric have lower performance than those OFETs built with non-UV-treated PPNB. Furthermore, the effect of the UV-illumination of PPNB and PPNB:PVK blend on the growth of the small molecules C60 and PSP has been studied by atomic force microscopy. Using photolithography, this kind of photochemistry can be performed to spatially control and tune the optical and electrical performance of organic electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...